Abstract
The mixing behavior of dimyristoylphosphatidylcholine (DMPC) with either N-palmitoyl-sphingosine (C16:0-ceramide) or N-nervonoyl-sphingosine (C24:1-ceramide) was examined using monomolecular films. While DMPC forms highly elastic liquid-expanded monolayers, both neat C16:0-ceramide and C24:1-ceramide yield stable solid condensed monomolecular films with small areas and low interfacial elasticity. Compression isotherms of mixed C16:0-ceramide/DMPC films exhibit an apparent condensation upon increasing X(cer16:0) at all surface pressures. The average area isobars, coupled with the lack of a liquid-expanded to condensed phase transition as X(cer16:0) is increased, are indicative of immiscibility of the lipids at all surface pressures. In contrast, isobars for C24:1-ceramide/DMPC mixtures show surface pressure-dependent apparent condensation or expansion and surface pressure-area isotherms show a composition and surface pressure-dependent phase transition. This suggests miscibility, albeit non-ideal, of C24:1-ceramide and DMPC in both liquid and condensed surface phases. The above could be verified by fluorescence microscopy of the monolayers and measurements of surface potential, which revealed distinctly different domain morphologies and surface potential values for the DMPC/C16:0- and DMPC/C24:1-ceramide monolayers. Taken together, whereas C16:0-ceramide and DMPC form immiscible pseudo-compounds, C24:1-ceramide and DMPC are partially miscible in both the liquid-expanded and condensed phases, and a composition and lateral pressure-dependent two-phase region is evident between the liquid-expanded and condensed regimes. Our results provide novel understanding of the regulation of membrane properties by ceramides and raise the possibility that ceramides with different acyl groups could serve very different functions in cells, relating to their different physicochemical properties.
Full Text
The Full Text of this article is available as a PDF (319.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S., Smaby J. M., Brown R. E. Acyl structure regulates galactosylceramide's interfacial interactions. Biochemistry. 1993 Nov 2;32(43):11696–11703. doi: 10.1021/bi00094a028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROCKMAN H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):57–79. doi: 10.1016/0009-3084(94)90174-0. [DOI] [PubMed] [Google Scholar]
- Carrer D. C., Maggio B. Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. J Lipid Res. 1999 Nov;40(11):1978–1989. [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Holopainen J. M., Angelova M. I., Kinnunen P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
- Holopainen J. M., Lemmich J., Richter F., Mouritsen O. G., Rapp G., Kinnunen P. K. Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering. Biophys J. 2000 May;78(5):2459–2469. doi: 10.1016/S0006-3495(00)76790-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K., Kõiv A., Lehtonen J. Y., Rytömaa M., Mustonen P. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids. 1994 Sep 6;73(1-2):181–207. doi: 10.1016/0009-3084(94)90181-3. [DOI] [PubMed] [Google Scholar]
- Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
- Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
- Lehtonen J. Y., Holopainen J. M., Kinnunen P. K. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys J. 1996 Apr;70(4):1753–1760. doi: 10.1016/S0006-3495(96)79738-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisanti M. P., Scherer P. E., Tang Z., Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994 Jul;4(7):231–235. doi: 10.1016/0962-8924(94)90114-7. [DOI] [PubMed] [Google Scholar]
- Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
- Löfgren H., Pascher I. Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem Phys Lipids. 1977 Dec;20(4):273–284. doi: 10.1016/0009-3084(77)90068-8. [DOI] [PubMed] [Google Scholar]
- Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
- Parton R. G., Joggerst B., Simons K. Regulated internalization of caveolae. J Cell Biol. 1994 Dec;127(5):1199–1215. doi: 10.1083/jcb.127.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascher I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta. 1976 Dec 2;455(2):433–451. doi: 10.1016/0005-2736(76)90316-3. [DOI] [PubMed] [Google Scholar]
- Phillips M. C., Chapman D. Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):301–313. doi: 10.1016/0005-2736(68)90115-6. [DOI] [PubMed] [Google Scholar]
- Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
- Smaby J. M., Brockman H. L. Surface dipole moments of lipids at the argon-water interface. Similarities among glycerol-ester-based lipids. Biophys J. 1990 Jul;58(1):195–204. doi: 10.1016/S0006-3495(90)82365-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smaby J. M., Kulkarni V. S., Momsen M., Brown R. E. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J. 1996 Feb;70(2):868–877. doi: 10.1016/S0006-3495(96)79629-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smaby J. M., Momsen M. M., Brockman H. L., Brown R. E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J. 1997 Sep;73(3):1492–1505. doi: 10.1016/S0006-3495(97)78181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. L., Jr, Matsko C. M., Lotze M. T., Amoscato A. A. Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem. 1999 Oct 22;274(43):30580–30588. doi: 10.1074/jbc.274.43.30580. [DOI] [PubMed] [Google Scholar]
- Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis R. M. Fluorescence microscopy of phospholipid monolayer phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):227–239. doi: 10.1016/0009-3084(91)90078-p. [DOI] [PubMed] [Google Scholar]
