Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):812–821. doi: 10.1016/S0006-3495(01)76060-2

Evolution of intermediates of influenza virus hemagglutinin-mediated fusion revealed by kinetic measurements of pore formation.

R M Markosyan 1, G B Melikyan 1, F S Cohen 1
PMCID: PMC1301279  PMID: 11159448

Abstract

Cells expressing wild-type influenza virus hemagglutinin (HA) or HA with a point mutation within the transmembrane domain (G520L) were bound to red blood cells and exposed to low pH for short times at suboptimal temperatures followed by reneutralization. This produced intermediate states of fusion. The ability of intermediate states to proceed on to fusion when temperature was raised was compared kinetically. In general, for wild-type HA, fusion occurred more quickly by directly lowering pH at 37 degrees C in the bound state than by raising temperature at the intermediate stage. When pH was lowered for 1-2 min, kinetics of fusion upon raising temperature of an intermediate slowed the longer the intermediate was maintained at neutral pH. But for a more sustained (10 min) acidification, kinetics was independent of the time the intermediate was held at neutral pH before triggering fusion by raising temperature. In contrast, generating intermediates in the same way with G520L yielded kinetics of fusion that did not depend on the time intermediates were maintained after reneutralization. For both HA and G520L, the extents of fusion did not depend on the temperature at which pH was lowered, but fusion from the intermediate was extremely sensitive to the temperature to which the cells were raised. The measured kinetics and temperature dependencies suggest that the rate-limiting step of fusion occurs subsequent to formation of any of the intermediates; the conformational change of HA into its final configuration may be the rate-limiting step.

Full Text

The Full Text of this article is available as a PDF (120.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen J., Skehel J. J., Wiley D. C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8967–8972. doi: 10.1073/pnas.96.16.8967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chernomordik L. V., Frolov V. A., Leikina E., Bronk P., Zimmerberg J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol. 1998 Mar 23;140(6):1369–1382. doi: 10.1083/jcb.140.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chernomordik L. V., Leikina E., Frolov V., Bronk P., Zimmerberg J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol. 1997 Jan 13;136(1):81–93. doi: 10.1083/jcb.136.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chernomordik L., Leikina E., Cho M. S., Zimmerberg J. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition. J Virol. 1995 May;69(5):3049–3058. doi: 10.1128/jvi.69.5.3049-3058.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Danieli T., Pelletier S. L., Henis Y. I., White J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol. 1996 May;133(3):559–569. doi: 10.1083/jcb.133.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doxsey S. J., Sambrook J., Helenius A., White J. An efficient method for introducing macromolecules into living cells. J Cell Biol. 1985 Jul;101(1):19–27. doi: 10.1083/jcb.101.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frolov V. A., Cho M. S., Bronk P., Reese T. S., Zimmerberg J. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 2000 Aug;1(8):622–630. doi: 10.1034/j.1600-0854.2000.010806.x. [DOI] [PubMed] [Google Scholar]
  9. Gaudin Y. Rabies virus-induced membrane fusion pathway. J Cell Biol. 2000 Aug 7;150(3):601–612. doi: 10.1083/jcb.150.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hart T. K., Truneh A., Bugelski P. J. Characterization of CD4-gp120 activation intermediates during human immunodeficiency virus type 1 syncytium formation. AIDS Res Hum Retroviruses. 1996 Sep 20;12(14):1305–1313. doi: 10.1089/aid.1996.12.1305. [DOI] [PubMed] [Google Scholar]
  11. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994 Jan 28;76(2):383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  12. Kingsley D. H., Behbahani A., Rashtian A., Blissard G. W., Zimmerberg J. A discrete stage of baculovirus GP64-mediated membrane fusion. Mol Biol Cell. 1999 Dec;10(12):4191–4200. doi: 10.1091/mbc.10.12.4191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LeDuc D. L., Shin Y. K., Epand R. F., Epand R. M. Factors determining vesicular lipid mixing induced by shortened constructs of influenza hemagglutinin. Biochemistry. 2000 Mar 14;39(10):2733–2739. doi: 10.1021/bi992457v. [DOI] [PubMed] [Google Scholar]
  14. Leikina E., Chernomordik L. V. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol Biol Cell. 2000 Jul;11(7):2359–2371. doi: 10.1091/mbc.11.7.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markosyan R. M., Cohen F. S., Melikyan G. B. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol Biol Cell. 2000 Apr;11(4):1143–1152. doi: 10.1091/mbc.11.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Melikyan G. B., Brener S. A., Ok D. C., Cohen F. S. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol. 1997 Mar 10;136(5):995–1005. doi: 10.1083/jcb.136.5.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Melikyan G. B., Jin H., Lamb R. A., Cohen F. S. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology. 1997 Aug 18;235(1):118–128. doi: 10.1006/viro.1997.8686. [DOI] [PubMed] [Google Scholar]
  18. Melikyan G. B., Lin S., Roth M. G., Cohen F. S. Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. Mol Biol Cell. 1999 Jun;10(6):1821–1836. doi: 10.1091/mbc.10.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melikyan G. B., Markosyan R. M., Brener S. A., Rozenberg Y., Cohen F. S. Role of the cytoplasmic tail of ecotropic moloney murine leukemia virus Env protein in fusion pore formation. J Virol. 2000 Jan;74(1):447–455. doi: 10.1128/jvi.74.1.447-455.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Melikyan G. B., Markosyan R. M., Hemmati H., Delmedico M. K., Lambert D. M., Cohen F. S. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol. 2000 Oct 16;151(2):413–423. doi: 10.1083/jcb.151.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Melikyan G. B., Markosyan R. M., Roth M. G., Cohen F. S. A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol Biol Cell. 2000 Nov;11(11):3765–3775. doi: 10.1091/mbc.11.11.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995 Nov;131(3):679–691. doi: 10.1083/jcb.131.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naim H. Y., Roth M. G. SV40 virus expression vectors. Methods Cell Biol. 1994;43(Pt A):113–136. doi: 10.1016/s0091-679x(08)60601-9. [DOI] [PubMed] [Google Scholar]
  24. Pak C. C., Puri A., Blumenthal R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry. 1997 Jul 22;36(29):8890–8896. doi: 10.1021/bi9702851. [DOI] [PubMed] [Google Scholar]
  25. Qiao H., Armstrong R. T., Melikyan G. B., Cohen F. S., White J. M. A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. Mol Biol Cell. 1999 Aug;10(8):2759–2769. doi: 10.1091/mbc.10.8.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ratinov V., Plonsky I., Zimmerberg J. Fusion pore conductance: experimental approaches and theoretical algorithms. Biophys J. 1998 May;74(5):2374–2387. doi: 10.1016/S0006-3495(98)77946-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scheiffele P., Roth M. G., Simons K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 1997 Sep 15;16(18):5501–5508. doi: 10.1093/emboj/16.18.5501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schoch C., Blumenthal R., Clague M. J. A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Lett. 1992 Oct 26;311(3):221–225. doi: 10.1016/0014-5793(92)81107-w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES