Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):822–831. doi: 10.1016/S0006-3495(01)76061-4

Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine.

D Huster 1, P Müller 1, K Arnold 1, A Herrmann 1
PMCID: PMC1301280  PMID: 11159449

Abstract

Location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) covalently attached to a short (C6) or a long (C12) sn2 acyl chain of a phosphatidylcholine molecule was investigated by fluorescence and solid-state NMR spectroscopy. 2H NMR lipid chain order parameters indicate a perturbation of the phospholipid packing density in the presence of NBD. Specifically, a decrease of molecular order was found for acyl chain segments of the lower, more hydrophobic region. Molecular collision probabilities determined by 1H magic angle spinning nuclear Overhauser enhancement spectroscopy indicate a highly dynamic reorientation of the probe in the membrane due to thermal fluctuations. A broad distribution of the fluorophore in the lipid bilayer is observed with a preferential location in the upper acyl chain/glycerol region. The distribution of the NBD group in the membrane is quite similar for both the long- and the short-chain analog. However, a slight preference of the NBD group for the lipid-water interface is found for C12-NBD-PC in comparison with C6-NBD-PC. Indeed, as shown by dithionite fluorescence assay, the long-chain analog reacts more favorably with dithionite, indicating a better accessibility of the probe by dithionite present in the aqueous phase. Forces determining the location of the fluorophore in the lipid water interface are discussed.

Full Text

The Full Text of this article is available as a PDF (118.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry J. A., Gawrisch K. Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry. 1995 Jul 11;34(27):8852–8860. doi: 10.1021/bi00027a037. [DOI] [PubMed] [Google Scholar]
  2. Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
  3. Chen Z. J., Stark R. E. Evaluating spin diffusion in MAS-NOESY spectra of phospholipid multibilayers. Solid State Nucl Magn Reson. 1996 Dec;7(3):239–246. doi: 10.1016/s0926-2040(96)01237-4. [DOI] [PubMed] [Google Scholar]
  4. Colleau M., Hervé P., Fellmann P., Devaux P. F. Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem Phys Lipids. 1991 Jan-Feb;57(1):29–37. doi: 10.1016/0009-3084(91)90046-e. [DOI] [PubMed] [Google Scholar]
  5. Comfurius P., Senden J. M., Tilly R. H., Schroit A. J., Bevers E. M., Zwaal R. F. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim Biophys Acta. 1990 Jul 24;1026(2):153–160. doi: 10.1016/0005-2736(90)90058-v. [DOI] [PubMed] [Google Scholar]
  6. Connor J., Gillum K., Schroit A. J. Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochim Biophys Acta. 1990 Jun 11;1025(1):82–86. doi: 10.1016/0005-2736(90)90193-r. [DOI] [PubMed] [Google Scholar]
  7. Connor J., Pak C. C., Schroit A. J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem. 1994 Jan 28;269(4):2399–2404. [PubMed] [Google Scholar]
  8. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  9. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holte L. L., Gawrisch K. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry. 1997 Apr 15;36(15):4669–4674. doi: 10.1021/bi9626416. [DOI] [PubMed] [Google Scholar]
  11. Hrafnsdóttir S., Nichols J. W., Menon A. K. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles. Biochemistry. 1997 Apr 22;36(16):4969–4978. doi: 10.1021/bi962513h. [DOI] [PubMed] [Google Scholar]
  12. Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
  13. Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
  15. Mazères S., Schram V., Tocanne J. F., Lopez A. 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J. 1996 Jul;71(1):327–335. doi: 10.1016/S0006-3495(96)79228-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McIntyre J. C., Sleight R. G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991 Dec 24;30(51):11819–11827. doi: 10.1021/bi00115a012. [DOI] [PubMed] [Google Scholar]
  17. Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nezil F. A., Bloom M. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J. 1992 May;61(5):1176–1183. doi: 10.1016/S0006-3495(92)81926-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pabst G., Rappolt M., Amenitsch H., Laggner P. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):4000–4009. doi: 10.1103/physreve.62.4000. [DOI] [PubMed] [Google Scholar]
  20. Persson S., Killian J. A., Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998 Sep;75(3):1365–1371. doi: 10.1016/s0006-3495(98)74054-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pomorski T., Herrmann A., Müller P., van Meer G., Burger K. Protein-mediated inward translocation of phospholipids occurs in both the apical and basolateral plasma membrane domains of epithelial cells. Biochemistry. 1999 Jan 5;38(1):142–150. doi: 10.1021/bi981244n. [DOI] [PubMed] [Google Scholar]
  22. Pomorski T., Herrmann A., Zachowski A., Devaux P. F., Müller P. Rapid determination of the transbilayer distribution of NBD-phospholipids in erythrocyte membranes with dithionite. Mol Membr Biol. 1994 Jan-Mar;11(1):39–44. doi: 10.3109/09687689409161028. [DOI] [PubMed] [Google Scholar]
  23. Pomorski T., Herrmann A., Zimmermann B., Zachowski A., Müller P. An improved assay for measuring the transverse redistribution of fluorescent phospholipids in plasma membranes. Chem Phys Lipids. 1995 Aug 25;77(2):139–146. doi: 10.1016/0009-3084(95)02473-v. [DOI] [PubMed] [Google Scholar]
  24. Pomorski T., Muller P., Zimmermann B., Burger K., Devaux P. F., Herrmann A. Transbilayer movement of fluorescent and spin-labeled phospholipids in the plasma membrane of human fibroblasts: a quantitative approach. J Cell Sci. 1996 Mar;109(Pt 3):687–698. doi: 10.1242/jcs.109.3.687. [DOI] [PubMed] [Google Scholar]
  25. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  26. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  27. Smeets E. F., Comfurius P., Bevers E. M., Zwaal R. F. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim Biophys Acta. 1994 Nov 2;1195(2):281–286. doi: 10.1016/0005-2736(94)90268-2. [DOI] [PubMed] [Google Scholar]
  28. Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
  29. Volke F., Pampel A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys J. 1995 May;68(5):1960–1965. doi: 10.1016/S0006-3495(95)80373-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wagner G., Wüthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor. J Mol Biol. 1982 Mar 5;155(3):347–366. doi: 10.1016/0022-2836(82)90009-2. [DOI] [PubMed] [Google Scholar]
  31. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  32. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wimley W. C., White S. H. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry. 1993 Jun 29;32(25):6307–6312. doi: 10.1021/bi00076a001. [DOI] [PubMed] [Google Scholar]
  34. Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES