Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):874–881. doi: 10.1016/S0006-3495(01)76066-3

Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting.

M C Williams 1, J R Wenner 1, I Rouzina 1, V A Bloomfield 1
PMCID: PMC1301285  PMID: 11159454

Abstract

When a single molecule of double-stranded DNA is stretched beyond its B-form contour length, the measured force shows a highly cooperative overstretching transition. We have investigated the source of this transition by altering helix stability with solution pH. As solution pH was increased from pH 6.0 to pH 10.6 in 250 mM NaCl, the overstretching transition force decreased from 67.0 +/- 0.8 pN to 56.2 +/- 0.8 pN, whereas the transition width remained nearly constant. As the pH was lowered from pH 6.0 to pH 3.1, the overstretching force decreased from 67.0 +/- 0.8 pN to 47.0 +/- 1.0 pN, but the transition width increased from 3.0 +/- 0.6 pN to 16.0 +/- 3 pN. These results quantitatively agree with a model that asserts that DNA strand dissociation, or melting, occurs during the overstretching transition.

Full Text

The Full Text of this article is available as a PDF (88.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahsan A., Rudnick J., Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys J. 1998 Jan;74(1):132–137. doi: 10.1016/S0006-3495(98)77774-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennink M. L., Schärer O. D., Kanaar R., Sakata-Sogawa K., Schins J. M., Kanger J. S., de Grooth B. G., Greve J. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry. 1999 Jul 1;36(3):200–208. doi: 10.1002/(sici)1097-0320(19990701)36:3<200::aid-cyto9>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  4. Bouchiat C., Wang M. D., Allemand J., Strick T., Block S. M., Croquette V. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J. 1999 Jan;76(1 Pt 1):409–413. doi: 10.1016/s0006-3495(99)77207-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chalikian T. V., Völker J., Plum G. E., Breslauer K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7853–7858. doi: 10.1073/pnas.96.14.7853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  8. Costantino L., Vitagliano V. pH-induced conformational changes of DNA. Biopolymers. 1966 Jun;4(5):521–528. doi: 10.1002/bip.1966.360040504. [DOI] [PubMed] [Google Scholar]
  9. Essevaz-Roulet B., Bockelmann U., Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11935–11940. doi: 10.1073/pnas.94.22.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GEIDUSCHEK E. P. On the factors controlling the reversibility of DNA denaturation. J Mol Biol. 1962 Jun;4:467–487. doi: 10.1016/s0022-2836(62)80103-x. [DOI] [PubMed] [Google Scholar]
  12. Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
  13. Hegner M., Smith S. B., Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10109–10114. doi: 10.1073/pnas.96.18.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holbrook J. A., Capp M. W., Saecker R. M., Record M. T., Jr Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999 Jun 29;38(26):8409–8422. doi: 10.1021/bi990043w. [DOI] [PubMed] [Google Scholar]
  15. Kosikov K. M., Gorin A. A., Zhurkin V. B., Olson W. K. DNA stretching and compression: large-scale simulations of double helical structures. J Mol Biol. 1999 Jun 25;289(5):1301–1326. doi: 10.1006/jmbi.1999.2798. [DOI] [PubMed] [Google Scholar]
  16. Lando DYu, Haroutiunian S. G., Kul'ba A. M., Dalian E. B., Orioli P., Mangani S., Akhrem A. A. Theoretical and experimental study of DNA helix-coil transition in acidic and alkaline medium. J Biomol Struct Dyn. 1994 Oct;12(2):355–366. doi: 10.1080/07391102.1994.10508745. [DOI] [PubMed] [Google Scholar]
  17. Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Luck G., Zimmer C., Snatzke G., Söndgerath G. Optical rotatory dispersion and circular dichroism of DNA from various sources at alkaline pH. Eur J Biochem. 1970 Dec;17(3):514–522. doi: 10.1111/j.1432-1033.1970.tb01194.x. [DOI] [PubMed] [Google Scholar]
  19. Maier B., Bensimon D., Croquette V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12002–12007. doi: 10.1073/pnas.97.22.12002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maiti M., Nandi R. pH induced change of natural deoxyribonucleic acids as followed by circular dichroism. Indian J Biochem Biophys. 1986 Dec;23(6):322–325. [PubMed] [Google Scholar]
  21. Mehta A. D., Finer J. T., Spudich J. A. Reflections of a lucid dreamer: optical trap design considerations. Methods Cell Biol. 1998;55:47–69. doi: 10.1016/s0091-679x(08)60402-1. [DOI] [PubMed] [Google Scholar]
  22. Mills J. B., Vacano E., Hagerman P. J. Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of poly(dT) and poly(dA). J Mol Biol. 1999 Jan 8;285(1):245–257. doi: 10.1006/jmbi.1998.2287. [DOI] [PubMed] [Google Scholar]
  23. Record M. T., Jr Electrostatic effects on polynucleotide transitions. II. Behavior of titrated systems. Biopolymers. 1967;5(10):993–1008. doi: 10.1002/bip.1967.360051011. [DOI] [PubMed] [Google Scholar]
  24. Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
  25. Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J. 1999 Dec;77(6):3242–3251. doi: 10.1016/S0006-3495(99)77155-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  27. Stoll V. S., Blanchard J. S. Buffers: principles and practice. Methods Enzymol. 1990;182:24–38. doi: 10.1016/0076-6879(90)82006-n. [DOI] [PubMed] [Google Scholar]
  28. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES