Abstract
The highly cooperative elongation of a single B-DNA molecule to almost twice its contour length upon application of a stretching force is interpreted as force-induced DNA melting. This interpretation is based on the similarity between experimental and calculated stretching profiles, when the force-dependent free energy of melting is obtained directly from the experimental force versus extension curves of double- and single-stranded DNA. The high cooperativity of the overstretching transition is consistent with a melting interpretation. The ability of nicked DNA to withstand forces greater than that at the transition midpoint is explained as a result of the one-dimensional nature of the melting transition, which leads to alternating zones of melted and unmelted DNA even substantially above the melting midpoint. We discuss the relationship between force-induced melting and the B-to-S transition suggested by other authors. The recently measured effect on T7 DNA polymerase activity of the force applied to a ssDNA template is interpreted in terms of preferential stabilization of dsDNA by weak forces approximately equal to 7 pN.
Full Text
The Full Text of this article is available as a PDF (135.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertucat G., Lavery R., Prévost C. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices. Biophys J. 1999 Sep;77(3):1562–1576. doi: 10.1016/S0006-3495(99)77004-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake R. D., Delcourt S. G. Thermal stability of DNA. Nucleic Acids Res. 1998 Jul 15;26(14):3323–3332. doi: 10.1093/nar/26.14.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buhot A, Halperin A. Extension of rod-coil multiblock copolymers and the effect of the helix-coil transition. Phys Rev Lett. 2000 Mar 6;84(10):2160–2163. doi: 10.1103/PhysRevLett.84.2160. [DOI] [PubMed] [Google Scholar]
- Chalikian T. V., Völker J., Plum G. E., Breslauer K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7853–7858. doi: 10.1073/pnas.96.14.7853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
- Essevaz-Roulet B., Bockelmann U., Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11935–11940. doi: 10.1073/pnas.94.22.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fixman M., Freire J. J. Theory of DNA melting curves. Biopolymers. 1977 Dec;16(12):2693–2704. doi: 10.1002/bip.1977.360161209. [DOI] [PubMed] [Google Scholar]
- Hegner M., Smith S. B., Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10109–10114. doi: 10.1073/pnas.96.18.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holbrook J. A., Capp M. W., Saecker R. M., Record M. T., Jr Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999 Jun 29;38(26):8409–8422. doi: 10.1021/bi990043w. [DOI] [PubMed] [Google Scholar]
- Kosikov K. M., Gorin A. A., Zhurkin V. B., Olson W. K. DNA stretching and compression: large-scale simulations of double helical structures. J Mol Biol. 1999 Jun 25;289(5):1301–1326. doi: 10.1006/jmbi.1999.2798. [DOI] [PubMed] [Google Scholar]
- Kozyavkin S. A., Mirkin S. M., Amirikyan B. R. The ionic strength dependence of the cooperativity factor for DNA melting. J Biomol Struct Dyn. 1987 Aug;5(1):119–126. doi: 10.1080/07391102.1987.10506380. [DOI] [PubMed] [Google Scholar]
- Lando DYu, Haroutiunian S. G., Kul'ba A. M., Dalian E. B., Orioli P., Mangani S., Akhrem A. A. Theoretical and experimental study of DNA helix-coil transition in acidic and alkaline medium. J Biomol Struct Dyn. 1994 Oct;12(2):355–366. doi: 10.1080/07391102.1994.10508745. [DOI] [PubMed] [Google Scholar]
- Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyubchenko Y. L., Frank-Kamenetskii M. D., Vologodskii A. V., Lazurkin Y. S., Gause G. G., Jr Fine structure of DNA melting curves. Biopolymers. 1976 Jun;15(6):1019–1036. doi: 10.1002/bip.1976.360150602. [DOI] [PubMed] [Google Scholar]
- Magazzú G., Bottaro G., Cataldo F., Iacono G., Di Donato F., Patane R., Cavataio F., Maltese I., Romano C., Arco A. Increasing incidence of childhood celiac disease in Sicily: results of a multicenter study. Acta Paediatr. 1994 Oct;83(10):1065–1069. doi: 10.1111/j.1651-2227.1994.tb12987.x. [DOI] [PubMed] [Google Scholar]
- Maier B., Bensimon D., Croquette V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12002–12007. doi: 10.1073/pnas.97.22.12002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills J. B., Vacano E., Hagerman P. J. Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of poly(dT) and poly(dA). J Mol Biol. 1999 Jan 8;285(1):245–257. doi: 10.1006/jmbi.1998.2287. [DOI] [PubMed] [Google Scholar]
- Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix. 2. Effect of solution conditions. Biophys J. 2001 Feb;80(2):894–900. doi: 10.1016/S0006-3495(01)76068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J. 1999 Dec;77(6):3242–3251. doi: 10.1016/S0006-3495(99)77155-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys J. 1999 Dec;77(6):3252–3255. doi: 10.1016/S0006-3495(99)77156-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992 Nov 13;258(5085):1122–1126. doi: 10.1126/science.1439819. [DOI] [PubMed] [Google Scholar]
- Wuite G. J., Smith S. B., Young M., Keller D., Bustamante C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature. 2000 Mar 2;404(6773):103–106. doi: 10.1038/35003614. [DOI] [PubMed] [Google Scholar]