Abstract
The energy transfer kinetics from carotenoids to chlorophylls and among chlorophylls has been measured by femtosecond transient absorption kinetics in a monomeric unit of the major light-harvesting complex (LHCII) from higher plants. The samples were reconstituted complexes with different carotenoid contents. The kinetics was measured both in the carotenoid absorption region and in the chlorophyll Q(y) region using two different excitation wavelengths suitable for selective excitation of the carotenoids. Analysis of the data shows that the overwhelming part of the energy transfer from the carotenoids occurs directly from the initially excited S(2) state of the carotenoids. Only a small part (<20%) may possibly take an S(1) pathway. All the S(2) energy transfer from carotenoids to chlorophylls occurs with time constants <100 fs. We have been able to differentiate among the three carotenoids, two luteins and neoxanthin, which have transfer times of approximately 50 and 75 fs for the two luteins, and approximately 90 fs for neoxanthin. About 50% of the energy absorbed by carotenoids is initially transferred directly to chlorophyll b (Chl b), while the rest is transferred to Chl a. Neoxanthin almost exclusively transfers to Chl b. Due to various complex effects discussed in the paper, such as a specific coupling of Chl b and Chl a excited states, the percentage of direct Chl b transfer thus is somewhat lower than estimated by us previously for LHCII from Arabidopsis thaliana. (Connelly, J. P., M. G. Müller, R. Bassi, R. Croce, and A. R. Holzwarth. 1997. Biochemistry. 36:281). We can distinguish three different Chls b receiving energy directly from carotenoids. We propose as a new mechanism that the carotenoid-to-Chl b transfer occurs to a large part via the B(x) state of Chl b and to the Q(x) state, while the transfer to Chl a occurs only via the Q(x) state. We find no compelling evidence in favor of a substantial S(1) transfer path of the carotenoids, although some transfer via the S(1) state of neoxanthin can not be entirely excluded. The S(1) lifetimes of the two luteins were determined to be 15 ps and 3.9 ps. A detailed quantitative analysis and kinetic model of the processes described here will be presented in a separate paper.
Full Text
The Full Text of this article is available as a PDF (4.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barzda V., Peterman E. J., van Grondelle R., van Amerongen H. The influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants. Biochemistry. 1998 Jan 13;37(2):546–551. doi: 10.1021/bi972123a. [DOI] [PubMed] [Google Scholar]
- Bassi R., Croce R., Cugini D., Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10056–10061. doi: 10.1073/pnas.96.18.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth P. J., Paulsen H. Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements. Biochemistry. 1996 Apr 23;35(16):5103–5108. doi: 10.1021/bi953053f. [DOI] [PubMed] [Google Scholar]
- Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
- Cinque G., Croce R., Holzwarth A., Bassi R. Energy transfer among CP29 chlorophylls: calculated Förster rates and experimental transient absorption at room temperature. Biophys J. 2000 Oct;79(4):1706–1717. doi: 10.1016/S0006-3495(00)76423-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connelly J. P., Müller M. G., Bassi R., Croce R., Holzwarth A. R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry. 1997 Jan 14;36(2):281–287. doi: 10.1021/bi962467l. [DOI] [PubMed] [Google Scholar]
- Croce R., Remelli R., Varotto C., Breton J., Bassi R. The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett. 1999 Jul 30;456(1):1–6. doi: 10.1016/s0014-5793(99)00907-2. [DOI] [PubMed] [Google Scholar]
- Croce R., Weiss S., Bassi R. Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem. 1999 Oct 15;274(42):29613–29623. doi: 10.1074/jbc.274.42.29613. [DOI] [PubMed] [Google Scholar]
- Giuffra E., Cugini D., Croce R., Bassi R. Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem. 1996 May 15;238(1):112–120. doi: 10.1111/j.1432-1033.1996.0112q.x. [DOI] [PubMed] [Google Scholar]
- Giuffra E., Zucchelli G., Sandonà D., Croce R., Cugini D., Garlaschi F. M., Bassi R., Jennings R. C. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry. 1997 Oct 21;36(42):12984–12993. doi: 10.1021/bi9711339. [DOI] [PubMed] [Google Scholar]
- Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green B. R., Durnford D. G. THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC PHOTOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):685–714. doi: 10.1146/annurev.arplant.47.1.685. [DOI] [PubMed] [Google Scholar]
- Hankamer Ben, Barber James, Boekema Egbert J. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):641–671. doi: 10.1146/annurev.arplant.48.1.641. [DOI] [PubMed] [Google Scholar]
- Hobe S., Niemeier H., Bender A., Paulsen H. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Eur J Biochem. 2000 Jan;267(2):616–624. doi: 10.1046/j.1432-1327.2000.01060.x. [DOI] [PubMed] [Google Scholar]
- Horton P., Ruban A. V., Walters R. G. REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):655–684. doi: 10.1146/annurev.arplant.47.1.655. [DOI] [PubMed] [Google Scholar]
- Kleima F. J., Gradinaru C. C., Calkoen F., van Stokkum I. H., van Grondelle R., van Amerongen H. Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. Biochemistry. 1997 Dec 9;36(49):15262–15268. doi: 10.1021/bi9716480. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- McTavish H., Picorel R., Seibert M. Stabilization of Isolated Photosystem II Reaction Center Complex in the Dark and in the Light Using Polyethylene Glycol and an Oxygen-Scrubbing System. Plant Physiol. 1989 Feb;89(2):452–456. doi: 10.1104/pp.89.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussberger S., Dekker J. P., Kühlbrandt W., van Bolhuis B. M., van Grondelle R., van Amerongen H. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry. 1994 Dec 13;33(49):14775–14783. doi: 10.1021/bi00253a016. [DOI] [PubMed] [Google Scholar]
- Paulsen H., Finkenzeller B., Kühlein N. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem. 1993 Aug 1;215(3):809–816. doi: 10.1111/j.1432-1033.1993.tb18096.x. [DOI] [PubMed] [Google Scholar]
- Paulsen H., Hobe S. Pigment-binding properties of mutant light-harvesting chlorophyll-a/b-binding protein. Eur J Biochem. 1992 Apr 1;205(1):71–76. doi: 10.1111/j.1432-1033.1992.tb16752.x. [DOI] [PubMed] [Google Scholar]
- Peterman E. J., Dukker F. M., van Grondelle R., van Amerongen H. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J. 1995 Dec;69(6):2670–2678. doi: 10.1016/S0006-3495(95)80138-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterman E. J., Gradinaru C. C., Calkoen F., Borst J. C., van Grondelle R., van Amerongen H. Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry. 1997 Oct 7;36(40):12208–12215. doi: 10.1021/bi9711689. [DOI] [PubMed] [Google Scholar]
- Plumley F. G., Schmidt G. W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):146–150. doi: 10.1073/pnas.84.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prokhorenko V. I., Steensgaard D. B., Holzwarth A. R. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J. 2000 Oct;79(4):2105–2120. doi: 10.1016/S0006-3495(00)76458-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
- Sandonà D., Croce R., Pagano A., Crimi M., Bassi R. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):207–214. doi: 10.1016/s0005-2728(98)00068-1. [DOI] [PubMed] [Google Scholar]
- Savikhin S., van Amerongen H., Kwa S. L., van Grondelle R., Struve W. S. Low-temperature energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of photosystem II. Biophys J. 1994 May;66(5):1597–1603. doi: 10.1016/S0006-3495(94)80951-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., Bassi R. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry. 1999 Oct 5;38(40):12974–12983. doi: 10.1021/bi991140s. [DOI] [PubMed] [Google Scholar]