Abstract
We report on a molecular dynamics (MD) simulation of carboxy-myoglobin (MbCO) embedded in a water-trehalose system. The mean square fluctuations of protein atoms, calculated at different temperatures in the 100-300 K range, are compared with those from a previous MD simulation on an H2O-solvated MbCO and with experimental data from Mössbauer spectroscopy and incoherent elastic neutron scattering on trehalose-coated MbCO. The results show that, for almost all the atomic classes, the amplitude of the nonharmonic motions stemming from the interconversion among the protein's conformational substates is reduced with respect to the H2O-solvated system, and their onset is shifted toward higher temperature. Moreover, our simulation shows that, at 300 K, the heme performs confined diffusive motions as a whole, leaving the underlying harmonic vibrations unaltered.
Full Text
The Full Text of this article is available as a PDF (196.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cordone L., Galajda P., Vitrano E., Gassmann A., Ostermann A., Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 1998;27(2):173–176. doi: 10.1007/s002490050123. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
- Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Ha S. N., Giammona A., Field M., Brady J. W. A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res. 1988 Sep 15;180(2):207–221. doi: 10.1016/0008-6215(88)80078-8. [DOI] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
- Ichiye T., Karplus M. Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation. Proteins. 1987;2(3):236–259. doi: 10.1002/prot.340020308. [DOI] [PubMed] [Google Scholar]
- Kleinert T., Doster W., Leyser H., Petry W., Schwarz V., Settles M. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry. 1998 Jan 13;37(2):717–733. doi: 10.1021/bi971508q. [DOI] [PubMed] [Google Scholar]
- Kuczera K., Kuriyan J., Karplus M. Temperature dependence of the structure and dynamics of myoglobin. A simulation approach. J Mol Biol. 1990 May 20;213(2):351–373. doi: 10.1016/S0022-2836(05)80196-2. [DOI] [PubMed] [Google Scholar]
- Librizzi F., Vitrano E., Cordone L. Dehydration and crystallization of trehalose and sucrose glasses containing carbonmonoxy-myoglobin. Biophys J. 1999 May;76(5):2727–2734. doi: 10.1016/S0006-3495(99)77425-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtenegger H., Doster W., Kleinert T., Birk A., Sepiol B., Vogl G. Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose. Biophys J. 1999 Jan;76(1 Pt 1):414–422. doi: 10.1016/S0006-3495(99)77208-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lung N. P., Thompson J. P., Kollias G. V., Jr, Klein P. A. Development of monoclonal antibodies for measurement of immunoglobulin G antibody responses in blue and gold macaws (Ara ararauna). Am J Vet Res. 1996 Aug;57(8):1157–1161. [PubMed] [Google Scholar]
- Makinen M. W., Houtchens R. A., Caughey W. S. Structure of carboxymyoglobin in crystals and in solution. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6042–6046. doi: 10.1073/pnas.76.12.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer E. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters. Biophys J. 1994 Aug;67(2):862–873. doi: 10.1016/S0006-3495(94)80547-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panek A. D. Trehalose metabolism--new horizons in technological applications. Braz J Med Biol Res. 1995 Feb;28(2):169–181. [PubMed] [Google Scholar]
- Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
- Post F., Doster W., Karvounis G., Settles M. Structural relaxation and nonexponential kinetics of CO-binding to horse myoglobin. Multiple flash photolysis experiments. Biophys J. 1993 Jun;64(6):1833–1842. doi: 10.1016/S0006-3495(93)81554-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastry G. M., Agmon N. Trehalose prevents myoglobin collapse and preserves its internal mobility. Biochemistry. 1997 Jun 10;36(23):7097–7108. doi: 10.1021/bi9626057. [DOI] [PubMed] [Google Scholar]
- Vitkup D., Ringe D., Petsko G. A., Karplus M. Solvent mobility and the protein 'glass' transition. Nat Struct Biol. 2000 Jan;7(1):34–38. doi: 10.1038/71231. [DOI] [PubMed] [Google Scholar]
- Vojtechovský J., Chu K., Berendzen J., Sweet R. M., Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys J. 1999 Oct;77(4):2153–2174. doi: 10.1016/S0006-3495(99)77056-6. [DOI] [PMC free article] [PubMed] [Google Scholar]