Abstract
Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow, are influenced by the nature of the denaturant used.
Full Text
The Full Text of this article is available as a PDF (141.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bilsel O., Matthews C. R. Barriers in protein folding reactions. Adv Protein Chem. 2000;53:153–207. doi: 10.1016/s0065-3233(00)53004-6. [DOI] [PubMed] [Google Scholar]
- Clarke D. T., Doig A. J., Stapley B. J., Jones G. R. The alpha-helix folds on the millisecond time scale. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7232–7237. doi: 10.1073/pnas.96.13.7232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Holtzer M. E., Crimmins D. L., Holtzer A. Structural stability of short subsequences of the tropomyosin chain. Biopolymers. 1995 Jan;35(1):125–136. doi: 10.1002/bip.360350113. [DOI] [PubMed] [Google Scholar]
- Holtzer M. E., Holtzer A. Alpha-helix to random coil transitions: determination of peptide concentration from the CD at the isodichroic point. Biopolymers. 1992 Dec;32(12):1675–1677. doi: 10.1002/bip.360321209. [DOI] [PubMed] [Google Scholar]
- Holtzer M. E., Lovett E. G., d'Avignon D. A., Holtzer A. Thermal unfolding in a GCN4-like leucine zipper: 13C alpha NMR chemical shifts and local unfolding curves. Biophys J. 1997 Aug;73(2):1031–1041. doi: 10.1016/S0006-3495(97)78136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenar K. T., García-Moreno B., Freire E. A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper. Protein Sci. 1995 Sep;4(9):1934–1938. doi: 10.1002/pro.5560040929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovett E. G., D'Avignon D. A., Holtzer M. E., Braswell E. H., Zhu D., Holtzer A. Observation via one-dimensional 13Calpha NMR of local conformational substates in thermal unfolding equilibria of a synthetic analog of the GCN4 leucine zipper. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1781–1785. doi: 10.1073/pnas.93.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
- McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
- Mo J. M., Holtzer M. E., Holtzer A. Kinetics of self-assembly of alpha alpha-tropomyosin coiled coils from unfolded chains. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):916–920. doi: 10.1073/pnas.88.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran L. B., Schneider J. P., Kentsis A., Reddy G. A., Sosnick T. R. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10699–10704. doi: 10.1073/pnas.96.19.10699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers J. K., Oas T. G. Reinterpretation of GCN4-p1 folding kinetics: partial helix formation precedes dimerization in coiled coil folding. J Mol Biol. 1999 Jun 4;289(2):205–209. doi: 10.1006/jmbi.1999.2747. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
- Potekhin S. A., Privalov P. L. Co-operative blocks in tropomyosin. J Mol Biol. 1982 Aug 15;159(3):519–535. doi: 10.1016/0022-2836(82)90299-6. [DOI] [PubMed] [Google Scholar]
- SCHWARZ G. ON THE KINETICS OF THE HELIX-COIL TRANSITION OF POLYPEPTIDES IN SOLUTION. J Mol Biol. 1965 Jan;11:64–77. doi: 10.1016/s0022-2836(65)80171-1. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Jackson S., Wilk R. R., Englander S. W., DeGrado W. F. The role of helix formation in the folding of a fully alpha-helical coiled coil. Proteins. 1996 Apr;24(4):427–432. doi: 10.1002/(SICI)1097-0134(199604)24:4<427::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Zitzewitz J. A., Bilsel O., Luo J., Jones B. E., Matthews C. R. Probing the folding mechanism of a leucine zipper peptide by stopped-flow circular dichroism spectroscopy. Biochemistry. 1995 Oct 3;34(39):12812–12819. doi: 10.1021/bi00039a042. [DOI] [PubMed] [Google Scholar]
- Zitzewitz J. A., Ibarra-Molero B., Fishel D. R., Terry K. L., Matthews C. R. Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J Mol Biol. 2000 Mar 3;296(4):1105–1116. doi: 10.1006/jmbi.2000.3507. [DOI] [PubMed] [Google Scholar]
- d'Avignon D. A., Bretthorst G. L., Holtzer M. E., Holtzer A. Site-specific thermodynamics and kinetics of a coiled-coil transition by spin inversion transfer NMR. Biophys J. 1998 Jun;74(6):3190–3197. doi: 10.1016/S0006-3495(98)78025-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- d'Avignon D. A., Bretthorst G. L., Holtzer M. E., Holtzer A. Thermodynamics and kinetics of a folded-folded' transition at valine-9 of a GCN4-like leucine zipper. Biophys J. 1999 May;76(5):2752–2759. doi: 10.1016/s0006-3495(99)77428-x. [DOI] [PMC free article] [PubMed] [Google Scholar]