Abstract
In an effort to visualize cytoskeletal filaments in living cells, we have developed modulated polarization microscopy. Modulated polarization microscopy visualizes cytoskeletal filaments based on their birefringence but differs from the standard polarization microscopy by exploiting the angle dependence of birefringence. A prototype instrument has been developed using two Faraday rotators under computer control to change the angle of plane polarized light at a known rate. By placing one Faraday rotator before and one after the specimen, rotation produced by the first Faraday rotator is cancelled by the second. This allows the use of fixed polarizer and analyzer in a crossed configuration and continuous imaging of the specimen between crossed polarizers. The variation in polarization angle of light illuminating the specimen causes birefringent elements to oscillate in brightness. Images acquired as polarization angle is varied are then processed by a Fourier filter image-processing algorithm. The Fourier filtering algorithm isolates those signals that vary at the proper rate, whereas static or random signals are removed. Here we show that the modulated polarization microscope can reveal cytoskeletal elements including stress fibers and microtubules in living cells.
Full Text
The Full Text of this article is available as a PDF (888.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN R. D., BRAULT J., MOORE R. D. A NEW METHOD OF POLARIZATION MICROSCOPIC ANALYSIS. I. SCANNING WITH A BIREFRINGENCE DETECTION SYSTEM. J Cell Biol. 1963 Aug;18:223–235. doi: 10.1083/jcb.18.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALLEN R. D., NAKAJIMA H. TWO-EXPOSURE, FILM DENSITOMETRIC METHOD MEASURING PHASE RETARDATIONS DUE TO WEAK BIREFRINGENCE IN FIBRILLAR OR MEMBRANOUS CELL CONSTITUENTS. Exp Cell Res. 1965 Jan;37:230–249. doi: 10.1016/0014-4827(65)90172-2. [DOI] [PubMed] [Google Scholar]
- ALLEN R. D., REBHUN L. I. Photoelectric measurement of small fluctuating retardations in weakly birefringent, lightscattering biological objects. I. The revolving tilted compensator method. Exp Cell Res. 1963 Feb;29:583–592. doi: 10.1016/s0014-4827(63)80018-x. [DOI] [PubMed] [Google Scholar]
- Allen R. D., Allen N. S. Video-enhanced microscopy with a computer frame memory. J Microsc. 1983 Jan;129(Pt 1):3–17. doi: 10.1111/j.1365-2818.1983.tb04157.x. [DOI] [PubMed] [Google Scholar]
- Allen R. D., Ellis G. W., Baker W. R., Jr, Johnston J. A., Jr Optical differentiation of amoebic ectoplasm and endoplasmic flow. Science. 1967 Oct 6;158(3797):142–143. doi: 10.1126/science.158.3797.142. [DOI] [PubMed] [Google Scholar]
- Baker W. R., Jr, Johnston J. A., Jr Optical differentiation of amoebic ectoplasm and endoplasmic flow. Science. 1967 May 12;156(3776):825–826. doi: 10.1126/science.156.3776.825. [DOI] [PubMed] [Google Scholar]
- Cassimeris L., Inoué S., Salmon E. D. Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy. Cell Motil Cytoskeleton. 1988;10(1-2):185–196. doi: 10.1002/cm.970100123. [DOI] [PubMed] [Google Scholar]
- Czaban B. B., Forer A. The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. II. Kinetochore microtubules in non-treated spindles. J Cell Sci. 1985 Nov;79:39–65. doi: 10.1242/jcs.79.1.39. [DOI] [PubMed] [Google Scholar]
- Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
- Geiger B., Rosen D., Berke G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol. 1982 Oct;95(1):137–143. doi: 10.1083/jcb.95.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerdes H. H., Kaether C. Green fluorescent protein: applications in cell biology. FEBS Lett. 1996 Jun 24;389(1):44–47. doi: 10.1016/0014-5793(96)00586-8. [DOI] [PubMed] [Google Scholar]
- INOUE S., HYDE W. L. Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J Biophys Biochem Cytol. 1957 Nov 25;3(6):831–838. doi: 10.1083/jcb.3.6.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J Cell Biol. 1981 May;89(2):346–356. doi: 10.1083/jcb.89.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfer A., Dennert G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J Immunol. 1984 Nov;133(5):2762–2766. [PubMed] [Google Scholar]
- Oldenbourg R. A new view on polarization microscopy. Nature. 1996 Jun 27;381(6585):811–812. doi: 10.1038/381811a0. [DOI] [PubMed] [Google Scholar]
- Prendergast F. G. Biophysics of the green fluorescent protein. Methods Cell Biol. 1999;58:1–18. doi: 10.1016/s0091-679x(08)61945-7. [DOI] [PubMed] [Google Scholar]
- Russell J. H., Dobos C. B. Characterization of a "heteroclitic" cytotoxic lymphocyte clone: heterogeneity of receptors or signals? J Immunol. 1983 Feb;130(2):538–541. [PubMed] [Google Scholar]
- SWANN M. M., MITCHISON J. M. Refinements in polarized light microscopy. J Exp Biol. 1950 Sep;27(2):226–237. doi: 10.1242/jeb.27.2.226. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Wang Y. L. Fluorescent analog cytochemistry: tracing functional protein components in living cells. Methods Cell Biol. 1989;29:1–12. [PubMed] [Google Scholar]
