Abstract
This paper describes a simple, qualitative approach for the determination of membrane protein secondary structure and topology in lipid bilayer membranes. The approach is based on the observation of wheel-like resonance patterns observed in the NMR 1H-15N/15N polarization inversion with spin exchange at the magic angle (PISEMA) and 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in oriented lipid bilayers. These patterns, named Pisa wheels, have been previously shown to reflect helical wheel projections of residues that are characteristic of alpha-helices associated with membranes. This study extends the analysis of these patterns to beta-strands associated with membranes and demonstrates that, as for the case of alpha-helices, Pisa wheels are extremely sensitive to the tilt, rotation, and twist of beta-strands in the membrane. Therefore, the Pisa wheels provide a sensitive, visually accessible, qualitative index of membrane protein secondary structure and topology.
Full Text
The Full Text of this article is available as a PDF (169.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benzinger T. L., Gregory D. M., Burkoth T. S., Miller-Auer H., Lynn D. G., Botto R. E., Meredith S. C. Two-dimensional structure of beta-amyloid(10-35) fibrils. Biochemistry. 2000 Mar 28;39(12):3491–3499. doi: 10.1021/bi991527v. [DOI] [PubMed] [Google Scholar]
 - Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
 - Fletcher T. G., Keire D. A. The interaction of beta-amyloid protein fragment (12-28) with lipid environments. Protein Sci. 1997 Mar;6(3):666–675. doi: 10.1002/pro.5560060316. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Gu Z. T., Opella S. J. Two- and three-dimensional 1H/13C PISEMA experiments and their application to backbone and side chain sites of amino acids and peptides. J Magn Reson. 1999 Oct;140(2):340–346. doi: 10.1006/jmre.1999.1825. [DOI] [PubMed] [Google Scholar]
 - Gu Z., Opella S. J. Three-dimensional 13C shift/1H-15N coupling/15N shift solid-state NMR correlation spectroscopy. J Magn Reson. 1999 Jun;138(2):193–198. doi: 10.1006/jmre.1999.1709. [DOI] [PubMed] [Google Scholar]
 - Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
 - Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
 - Kim Y., Valentine K., Opella S. J., Schendel S. L., Cramer W. A. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 1998 Feb;7(2):342–348. doi: 10.1002/pro.5560070214. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Kovacs F. A., Denny J. K., Song Z., Quine J. R., Cross T. A. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. J Mol Biol. 2000 Jan 7;295(1):117–125. doi: 10.1006/jmbi.1999.3322. [DOI] [PubMed] [Google Scholar]
 - Kuszewski J., Qin J., Gronenborn A. M., Clore G. M. The impact of direct refinement against 13C alpha and 13C beta chemical shifts on protein structure determination by NMR. J Magn Reson B. 1995 Jan;106(1):92–96. doi: 10.1006/jmrb.1995.1017. [DOI] [PubMed] [Google Scholar]
 - Lansbury P. T., Jr, Costa P. R., Griffiths J. M., Simon E. J., Auger M., Halverson K. J., Kocisko D. A., Hendsch Z. S., Ashburn T. T., Spencer R. G. Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol. 1995 Nov;2(11):990–998. doi: 10.1038/nsb1195-990. [DOI] [PubMed] [Google Scholar]
 - Mai W., Hu W., Wang C., Cross T. A. Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci. 1993 Apr;2(4):532–542. doi: 10.1002/pro.5560020405. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., Montal M., Opella S. J. Dilute spin-exchange assignment of solid-state NMR spectra of oriented proteins: acetylcholine M2 in bilayers. J Biomol NMR. 1999 Jun;14(2):141–148. doi: 10.1023/a:1008391823293. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Marassi F. M., Ma C., Gesell J. J., Opella S. J. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly (15)N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson. 2000 May;144(1):156–161. doi: 10.1006/jmre.2000.2036. [DOI] [PubMed] [Google Scholar]
 - Marassi F. M., Ma C., Gratkowski H., Straus S. K., Strebel K., Oblatt-Montal M., Montal M., Opella S. J. Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14336–14341. doi: 10.1073/pnas.96.25.14336. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Opella S. J., Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., Montal M. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol. 1999 Apr;6(4):374–379. doi: 10.1038/7610. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Opella S. J., Stewart P. L., Valentine K. G. Protein structure by solid-state NMR spectroscopy. Q Rev Biophys. 1987 Feb;19(1-2):7–49. doi: 10.1017/s0033583500004017. [DOI] [PubMed] [Google Scholar]
 - Ramamoorthy A., Wu C. H., Opella S. J. Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei. J Magn Reson B. 1995 Apr;107(1):88–90. doi: 10.1006/jmrb.1995.1063. [DOI] [PubMed] [Google Scholar]
 - Sali A. 100,000 protein structures for the biologist. Nat Struct Biol. 1998 Dec;5(12):1029–1032. doi: 10.1038/4136. [DOI] [PubMed] [Google Scholar]
 - Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Seshadri K., Garemyr R., Wallin E., von Heijne G., Elofsson A. Architecture of beta-barrel membrane proteins: analysis of trimeric porins. Protein Sci. 1998 Sep;7(9):2026–2032. doi: 10.1002/pro.5560070919. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Tan W. M., Gu Z., Zeri A. C., Opella S. J. Solid-state NMR triple-resonance backbone assignments in a protein. J Biomol NMR. 1999 Apr;13(4):337–342. doi: 10.1023/a:1008379105545. [DOI] [PubMed] [Google Scholar]
 - Terzi E., Hölzemann G., Seelig J. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry. 1997 Dec 2;36(48):14845–14852. doi: 10.1021/bi971843e. [DOI] [PubMed] [Google Scholar]
 - Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Wang J., Denny J., Tian C., Kim S., Mo Y., Kovacs F., Song Z., Nishimura K., Gan Z., Fu R. Imaging membrane protein helical wheels. J Magn Reson. 2000 May;144(1):162–167. doi: 10.1006/jmre.2000.2037. [DOI] [PubMed] [Google Scholar]
 - Weiss M. S., Kreusch A., Schiltz E., Nestel U., Welte W., Weckesser J., Schulz G. E. The structure of porin from Rhodobacter capsulatus at 1.8 A resolution. FEBS Lett. 1991 Mar 25;280(2):379–382. doi: 10.1016/0014-5793(91)80336-2. [DOI] [PubMed] [Google Scholar]
 - White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
 - Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
 - Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
 - Yanagisawa K., Odaka A., Suzuki N., Ihara Y. GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nat Med. 1995 Oct;1(10):1062–1066. doi: 10.1038/nm1095-1062. [DOI] [PubMed] [Google Scholar]
 
