Abstract
Second harmonic generation (SHG) was used to study both the adsorption of malachite green (MG), a positively charged organic dye, onto liposomes of different lipid compositions, and the transport kinetics of MG across the liposome bilayer in real time. We found that the dye adsorption increased linearly with the fraction of negatively charged lipids in the bilayer. Similarly, the transport rate constant for crossing the bilayer increased linearly with the fraction of charged lipid in the bilayer.
Full Text
The Full Text of this article is available as a PDF (149.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bashford C. L., Chance B., Smith J. C., Yoshida T. The behavior of oxonol dyes in phospholipid dispersions. Biophys J. 1979 Jan;25(1):63–85. doi: 10.1016/S0006-3495(79)85278-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buster D. C., Hinton J. F., Millett F. S., Shungu D. C. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions. Biophys J. 1988 Feb;53(2):145–152. doi: 10.1016/S0006-3495(88)83076-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cafiso D. S. Electron paramagnetic resonance methods for measuring pH gradients, transmembrane potentials, and membrane dynamics. Methods Enzymol. 1989;172:331–345. doi: 10.1016/s0076-6879(89)72022-x. [DOI] [PubMed] [Google Scholar]
- Cafiso D. S., Hubbell W. L. Electrogenic H+/OH- movement across phospholipid vesicles measured by spin-labeled hydrophobic ions. Biophys J. 1983 Oct;44(1):49–57. doi: 10.1016/S0006-3495(83)84276-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casals C., Miguel E., Perez-Gil J. Tryptophan fluorescence study on the interaction of pulmonary surfactant protein A with phospholipid vesicles. Biochem J. 1993 Dec 15;296(Pt 3):585–593. doi: 10.1042/bj2960585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti A. C., Clark-Lewis I., Cullis P. R. Influence of charge, charge distribution, and hydrophobicity on the transport of short model peptides into liposomes in response to transmembrane pH gradients. Biochemistry. 1994 Jul 19;33(28):8479–8485. doi: 10.1021/bi00194a012. [DOI] [PubMed] [Google Scholar]
- Clarke R. J. A theoretical description of non-steady-state diffusion of hydrophobic ions across lipid vesicle membranes including effects of ion-ion interactions in the aqueous phase. Biophys Chem. 1993 Apr;46(2):131–143. doi: 10.1016/0301-4622(93)85020-i. [DOI] [PubMed] [Google Scholar]
- Clarke R. J. An adsorption isotherm for the interaction of membrane-permeable hydrophobic ions with lipid vesicles. Biophys Chem. 1992 Jan;42(1):63–72. doi: 10.1016/0301-4622(92)80007-r. [DOI] [PubMed] [Google Scholar]
- Clarke R. J., Apell H. J. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles. Biophys Chem. 1989 Nov;34(3):225–237. doi: 10.1016/0301-4622(89)80061-4. [DOI] [PubMed] [Google Scholar]
- Clarke R. J. Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles. Biophys Chem. 1991 Jan;39(1):91–106. doi: 10.1016/0301-4622(91)85010-n. [DOI] [PubMed] [Google Scholar]
- Eidelman O., Cabantchik Z. I. Continuous monitoring of transport by fluorescence on cells and vesicles. Biochim Biophys Acta. 1989 Dec 6;988(3):319–334. doi: 10.1016/0304-4157(89)90008-7. [DOI] [PubMed] [Google Scholar]
- Eisenthal K. B. Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. Chem Rev. 1996 Jun 20;96(4):1343–1360. doi: 10.1021/cr9502211. [DOI] [PubMed] [Google Scholar]
- Engelbert H. P., Lawaczeck R. Isotopic light scattering of lipid vesicles. Water permeation and effect of alpha-tocopherol. Chem Phys Lipids. 1985 Nov-Dec;38(4):365–379. doi: 10.1016/0009-3084(85)90030-1. [DOI] [PubMed] [Google Scholar]
- Flewelling R. F., Hubbell W. L. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J. 1986 Feb;49(2):531–540. doi: 10.1016/S0006-3495(86)83663-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabev E., Kasianowicz J., Abbott T., McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta. 1989 Feb 13;979(1):105–112. doi: 10.1016/0005-2736(89)90529-4. [DOI] [PubMed] [Google Scholar]
- Haynes D. H., Simkowitz P. 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry. J Membr Biol. 1977 May 6;33(1-2):63–108. doi: 10.1007/BF01869512. [DOI] [PubMed] [Google Scholar]
- Kaiser S, Hoffmann H. Transport of Ions through Vesicle Bilayers. J Colloid Interface Sci. 1996 Dec 1;184(1):1–10. doi: 10.1006/jcis.1996.0591. [DOI] [PubMed] [Google Scholar]
- Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J. 1991 Jul;60(1):135–148. doi: 10.1016/S0006-3495(91)82037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry. 1992 Feb 18;31(6):1767–1773. doi: 10.1021/bi00121a026. [DOI] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 1991 Jul;60(1):149–159. doi: 10.1016/S0006-3495(91)82038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noy N., Leonard M., Zakim D. The kinetics of interactions of bilirubin with lipid bilayers and with serum albumin. Biophys Chem. 1992 Feb;42(2):177–188. doi: 10.1016/0301-4622(92)85007-q. [DOI] [PubMed] [Google Scholar]
- Sundberg S. A., Hubbell W. L. Investigation of surface potential asymmetry in phospholipid vesicles by a spin label relaxation method. Biophys J. 1986 Feb;49(2):553–562. doi: 10.1016/S0006-3495(86)83665-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terce F., Tocanne J. F., Laneelle G. Interactions of ellipticine with model or natural membranes. A spectrophotometric study. Eur J Biochem. 1982 Jun 15;125(1):203–207. doi: 10.1111/j.1432-1033.1982.tb06669.x. [DOI] [PubMed] [Google Scholar]
- Voelker D., Smejtek P. Adsorption of ruthenium red to phospholipid membranes. Biophys J. 1996 Feb;70(2):818–830. doi: 10.1016/S0006-3495(96)79621-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiang T. X., Anderson B. D. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys J. 1997 Jan;72(1):223–237. doi: 10.1016/S0006-3495(97)78661-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan E. C., Eisenthal K. B. Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. Biophys J. 2000 Aug;79(2):898–903. doi: 10.1016/S0006-3495(00)76345-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucker S. D., Goessling W., Gollan J. L. Kinetics of bilirubin transfer between serum albumin and membrane vesicles. Insight into the mechanism of organic anion delivery to the hepatocyte plasma membrane. J Biol Chem. 1995 Jan 20;270(3):1074–1081. doi: 10.1074/jbc.270.3.1074. [DOI] [PubMed] [Google Scholar]