Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):1024–1028. doi: 10.1016/S0006-3495(01)76081-X

Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging.

V J Wedeen 1, T G Reese 1, V J Napadow 1, R J Gilbert 1
PMCID: PMC1301300  PMID: 11159469

Abstract

The myoarchitecture of the tongue is comprised of a complex array of muscle fiber bundles, which form the structural basis for lingual deformations during speech and swallowing. We used magnetic resonance imaging of the water diffusion tensor to display the primary and secondary fiber architectural attributes of the excised bovine tongue. Fiber orientation mapping provides a subdivision of the tongue into its principal intrinsic and extrinsic muscular components. The anterior tongue consists of a central region of orthogonally oriented intrinsic fibers surrounded by an axially oriented muscular sheath. The posterior tongue consists principally of a central region of extrinsic fibers, originating at the inferior surface and projecting in a fan-like manner in the superior, lateral, and posterior directions, and lateral populations of extrinsic fibers directed posterior-inferior and posterior-superior. Analysis of cross-fiber anisotropy indicates a basic contrast of design between the extrinsic and the intrinsic fibers. Whereas the extrinsic muscles exhibit a uniaxial architecture typical of skeletal muscle, the intrinsic core muscles, comprised of the verticalis and the transversus muscles, show strong cross-fiber anisotropy. This pattern is consistent with the theory that the tongue's core functions as a muscular hydrostat in that conjoint contraction of the transverse and vertical fibers enable the tissue to expand at right angles to these fibers. These findings suggest that three-dimensional analysis of diffusion tensor magnetic resonance imaging provides a structural basis for understanding the micromechanics of the mammalian tongue.

Full Text

The Full Text of this article is available as a PDF (494.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arts T., Meerbaum S., Reneman R. S., Corday E. Torsion of the left ventricle during the ejection phase in the intact dog. Cardiovasc Res. 1984 Mar;18(3):183–193. doi: 10.1093/cvr/18.3.183. [DOI] [PubMed] [Google Scholar]
  2. Arts T., Prinzen F. W., Snoeckx L. H., Rijcken J. M., Reneman R. S. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study. Biophys J. 1994 Apr;66(4):953–961. doi: 10.1016/S0006-3495(94)80876-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basser P. J., Mattiello J., LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994 Jan;66(1):259–267. doi: 10.1016/S0006-3495(94)80775-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Douek P., Turner R., Pekar J., Patronas N., Le Bihan D. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr. 1991 Nov-Dec;15(6):923–929. doi: 10.1097/00004728-199111000-00003. [DOI] [PubMed] [Google Scholar]
  5. Garrido L., Wedeen V. J., Kwong K. K., Spencer U. M., Kantor H. L. Anisotropy of water diffusion in the myocardium of the rat. Circ Res. 1994 May;74(5):789–793. doi: 10.1161/01.res.74.5.789. [DOI] [PubMed] [Google Scholar]
  6. Gilbert R. J., Reese T. G., Daftary S. J., Smith R. N., Weisskoff R. M., Wedeen V. J. Determination of lingual myoarchitecture in whole tissue by NMR imaging of anisotropic water diffusion. Am J Physiol. 1998 Aug;275(2 Pt 1):G363–G369. doi: 10.1152/ajpgi.1998.275.2.G363. [DOI] [PubMed] [Google Scholar]
  7. Gmitro A. F., Alexander A. L. Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med. 1993 Jun;29(6):835–838. doi: 10.1002/mrm.1910290619. [DOI] [PubMed] [Google Scholar]
  8. Hajnal J. V., Doran M., Hall A. S., Collins A. G., Oatridge A., Pennock J. M., Young I. R., Bydder G. M. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr. 1991 Jan-Feb;15(1):1–18. doi: 10.1097/00004728-199101000-00001. [DOI] [PubMed] [Google Scholar]
  9. LeGrice I. J., Takayama Y., Covell J. W. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res. 1995 Jul;77(1):182–193. doi: 10.1161/01.res.77.1.182. [DOI] [PubMed] [Google Scholar]
  10. McLean M., Prothero J. Determination of relative fiber orientation in heart muscle: methodological problems. Anat Rec. 1992 Apr;232(4):459–465. doi: 10.1002/ar.1092320402. [DOI] [PubMed] [Google Scholar]
  11. Merboldt K. D., Hänicke W., Frahm J. Diffusion imaging using stimulated echoes. Magn Reson Med. 1991 Jun;19(2):233–239. doi: 10.1002/mrm.1910190208. [DOI] [PubMed] [Google Scholar]
  12. Moseley M. E., Kucharczyk J., Asgari H. S., Norman D. Anisotropy in diffusion-weighted MRI. Magn Reson Med. 1991 Jun;19(2):321–326. doi: 10.1002/mrm.1910190222. [DOI] [PubMed] [Google Scholar]
  13. Napadow V. J., Chen Q., Wedeen V. J., Gilbert R. J. Intramural mechanics of the human tongue in association with physiological deformations. J Biomech. 1999 Jan;32(1):1–12. doi: 10.1016/s0021-9290(98)00109-2. [DOI] [PubMed] [Google Scholar]
  14. Reese T. G., Weisskoff R. M., Smith R. N., Rosen B. R., Dinsmore R. E., Wedeen V. J. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med. 1995 Dec;34(6):786–791. doi: 10.1002/mrm.1910340603. [DOI] [PubMed] [Google Scholar]
  15. Wu J. C., Wong E. C., Arrindell E. L., Simons K. B., Jesmanowicz A., Hyde J. S. In vivo determination of the anisotropic diffusion of water and the T1 and T2 times in the rabbit lens by high-resolution magnetic resonance imaging. Invest Ophthalmol Vis Sci. 1993 Jun;34(7):2151–2158. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES