Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1075–1087. doi: 10.1016/S0006-3495(01)76086-9

Statistical thermodynamics of membrane bending-mediated protein-protein attractions.

T Chou 1, K S Kim 1, G Oster 1
PMCID: PMC1301305  PMID: 11222274

Abstract

Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal's, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins' shape, height, contact angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. For flat membranes, bending rigidities of approximately 100k(B)T, moderate ellipticities, and large contact angle proteins, we find thermally averaged attractive interactions of order k(B)T. These interactions may play an important role in the intermediate stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be relevant are cited, and possible experiments are discussed.

Full Text

The Full Text of this article is available as a PDF (188.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brasseur R. Tilted peptides: a motif for membrane destabilization (hypothesis). Mol Membr Biol. 2000 Jan-Mar;17(1):31–40. doi: 10.1080/096876800294461. [DOI] [PubMed] [Google Scholar]
  2. Cho M. R., Knowles D. W., Smith B. L., Moulds J. J., Agre P., Mohandas N., Golan D. E. Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells. Biophys J. 1999 Feb;76(2):1136–1144. doi: 10.1016/S0006-3495(99)77278-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
  4. Discher D. E., Mohandas N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J. 1996 Oct;71(4):1680–1694. doi: 10.1016/S0006-3495(96)79424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elliott J. R., Needham D., Dilger J. P., Haydon D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim Biophys Acta. 1983 Oct 26;735(1):95–103. doi: 10.1016/0005-2736(83)90264-x. [DOI] [PubMed] [Google Scholar]
  6. Golestanian R, Goulian M, Kardar M. Fluctuation-induced interactions between rods on a membrane. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Dec;54(6):6725–6734. doi: 10.1103/physreve.54.6725. [DOI] [PubMed] [Google Scholar]
  7. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  8. Iñiguez-Lluhi J., Kleuss C., Gilman A. G. The importance of G-protein beta lambda subunits. Trends Cell Biol. 1993 Jul;3(7):230–236. doi: 10.1016/0962-8924(93)90122-h. [DOI] [PubMed] [Google Scholar]
  9. Kim K. S., Neu J., Oster G. Curvature-mediated interactions between membrane proteins. Biophys J. 1998 Nov;75(5):2274–2291. doi: 10.1016/S0006-3495(98)77672-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim K. S., Neu J., Oster G. Effect of protein shape on multibody interactions between membrane inclusions. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt B):4281–4285. doi: 10.1103/physreve.61.4281. [DOI] [PubMed] [Google Scholar]
  11. Kolb H. A., Bamberg E. Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies. Biochim Biophys Acta. 1977 Jan 4;464(1):127–141. doi: 10.1016/0005-2736(77)90376-5. [DOI] [PubMed] [Google Scholar]
  12. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  13. McGee M. P., Teuschler H. Adsorption of vitamin K-dependent proteins to live cell membranes measured under flow conditions. Thromb Haemost. 1999 Jul;82(1):93–99. [PubMed] [Google Scholar]
  14. Myat M. M., Anderson S., Allen L. A., Aderem A. MARCKS regulates membrane ruffling and cell spreading. Curr Biol. 1997 Aug 1;7(8):611–614. doi: 10.1016/s0960-9822(06)00262-4. [DOI] [PubMed] [Google Scholar]
  15. Neal B. L., Asthagiri D., Lenhoff A. M. Molecular origins of osmotic second virial coefficients of proteins. Biophys J. 1998 Nov;75(5):2469–2477. doi: 10.1016/S0006-3495(98)77691-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Netz RR, Pincus P. Inhomogeneous fluid membranes: Segregation, ordering, and effective rigidity. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4114–4128. doi: 10.1103/physreve.52.4114. [DOI] [PubMed] [Google Scholar]
  17. Nielsen C., Goulian M., Andersen O. S. Energetics of inclusion-induced bilayer deformations. Biophys J. 1998 Apr;74(4):1966–1983. doi: 10.1016/S0006-3495(98)77904-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nusser Z., Hájos N., Somogyi P., Mody I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature. 1998 Sep 10;395(6698):172–177. doi: 10.1038/25999. [DOI] [PubMed] [Google Scholar]
  19. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., Söling H. D. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature. 1999 Sep 9;401(6749):133–141. doi: 10.1038/43613. [DOI] [PubMed] [Google Scholar]
  20. Song J., Waugh R. E. Bending rigidity of SOPC membranes containing cholesterol. Biophys J. 1993 Jun;64(6):1967–1970. doi: 10.1016/S0006-3495(93)81566-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stegmann T., Doms R. W., Helenius A. Protein-mediated membrane fusion. Annu Rev Biophys Biophys Chem. 1989;18:187–211. doi: 10.1146/annurev.bb.18.060189.001155. [DOI] [PubMed] [Google Scholar]
  22. Strey H., Peterson M., Sackmann E. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J. 1995 Aug;69(2):478–488. doi: 10.1016/S0006-3495(95)79921-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamada M., Ohta Y., Sakaki T., Yabusaki Y., Ohkawa H., Kawato S. Dynamic mobility of genetically expressed fusion protein between cytochrome P4501A1 and NADPH-cytochrome P450 reductase in yeast microsomes. Biochemistry. 1999 Jul 20;38(29):9465–9470. doi: 10.1021/bi990648s. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES