Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1195–1209. doi: 10.1016/S0006-3495(01)76096-1

Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans.

O V Aslanidi 1, O A Mornev 1, O Skyggebjerg 1, P Arkhammar 1, O Thastrup 1, M P Sørensen 1, P L Christiansen 1, K Conradsen 1, A C Scott 1
PMCID: PMC1301315  PMID: 11222284

Abstract

In response to glucose application, beta-cells forming pancreatic islets of Langerhans start bursting oscillations of the membrane potential and intracellular calcium concentration, inducing insulin secretion by the cells. Until recently, it has been assumed that the bursting activity of beta-cells in a single islet of Langerhans is synchronized across the whole islet due to coupling between the cells. However, time delays of several seconds in the activity of distant cells are usually observed in the islets of Langerhans, indicating that electrical/calcium wave propagation through the islets can occur. This work presents both experimental and theoretical evidence for wave propagation in the islets of Langerhans. Experiments with Fura-2 fluorescence monitoring of spatiotemporal calcium dynamics in the islets have clearly shown such wave propagation. Furthermore, numerical simulations of the model describing a cluster of electrically coupled beta-cells have supported our view that the experimentally observed calcium waves are due to electric pulses propagating through the cluster. This point of view is also supported by independent experimental results. Based on the model equations, an approximate analytical expression for the wave velocity is introduced, indicating which parameters can alter the velocity. We point to the possible role of the observed waves as signals controlling the insulin secretion inside the islets of Langerhans, in particular, in the regions that cannot be reached by any external stimuli such as high glucose concentration outside the islets.

Full Text

The Full Text of this article is available as a PDF (261.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreu E., Soria B., Sanchez-Andres J. V. Oscillation of gap junction electrical coupling in the mouse pancreatic islets of Langerhans. J Physiol. 1997 Feb 1;498(Pt 3):753–761. doi: 10.1113/jphysiol.1997.sp021899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  3. Atwater I., Ribalet B., Rojas E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol. 1978 May;278:117–139. doi: 10.1113/jphysiol.1978.sp012296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett B. D., Jetton T. L., Ying G., Magnuson M. A., Piston D. W. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem. 1996 Feb 16;271(7):3647–3651. doi: 10.1074/jbc.271.7.3647. [DOI] [PubMed] [Google Scholar]
  5. Bergsten P., Grapengiesser E., Gylfe E., Tengholm A., Hellman B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem. 1994 Mar 25;269(12):8749–8753. [PubMed] [Google Scholar]
  6. Bertram R., Pernarowski M. Glucose diffusion in pancreatic islets of Langerhans. Biophys J. 1998 Apr;74(4):1722–1731. doi: 10.1016/S0006-3495(98)77883-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertuzzi F., Davalli A. M., Nano R., Socci C., Codazzi F., Fesce R., Di Carlo V., Pozza G., Grohovaz F. Mechanisms of coordination of Ca2+ signals in pancreatic islet cells. Diabetes. 1999 Oct;48(10):1971–1978. doi: 10.2337/diabetes.48.10.1971. [DOI] [PubMed] [Google Scholar]
  8. Bertuzzi F., Zacchetti D., Berra C., Socci C., Pozza G., Pontiroli A. E., Grohovaz F. Intercellular Ca2+ waves sustain coordinate insulin secretion in pig islets of Langerhans. FEBS Lett. 1996 Jan 22;379(1):21–25. doi: 10.1016/0014-5793(95)01422-5. [DOI] [PubMed] [Google Scholar]
  9. Bonke F. I., Kirchhof C. J., Allessie M. A., Wit A. L. Impulse propagation from the SA-node to the ventricles. Experientia. 1987 Oct 15;43(10):1044–1049. doi: 10.1007/BF01956037. [DOI] [PubMed] [Google Scholar]
  10. Bonner-Weir S., Deery D., Leahy J. L., Weir G. C. Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes. 1989 Jan;38(1):49–53. doi: 10.2337/diab.38.1.49. [DOI] [PubMed] [Google Scholar]
  11. Cao D., Lin G., Westphale E. M., Beyer E. C., Steinberg T. H. Mechanisms for the coordination of intercellular calcium signaling in insulin-secreting cells. J Cell Sci. 1997 Feb;110(Pt 4):497–504. doi: 10.1242/jcs.110.4.497. [DOI] [PubMed] [Google Scholar]
  12. Chay T. R., Keizer J. Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J. 1983 May;42(2):181–190. doi: 10.1016/S0006-3495(83)84384-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  14. Detimary P., Gilon P., Henquin J. C. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J. 1998 Jul 15;333(Pt 2):269–274. doi: 10.1042/bj3330269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dupont G., Goldbeter A. Properties of intracellular Ca2+ waves generated by a model based on Ca(2+)-induced Ca2+ release. Biophys J. 1994 Dec;67(6):2191–2204. doi: 10.1016/S0006-3495(94)80705-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eddlestone G. T., Gonçalves A., Bangham J. A., Rojas E. Electrical coupling between cells in islets of Langerhans from mouse. J Membr Biol. 1984;77(1):1–14. doi: 10.1007/BF01871095. [DOI] [PubMed] [Google Scholar]
  17. Gilon P., Henquin J. C. Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology. 1995 Dec;136(12):5725–5730. doi: 10.1210/endo.136.12.7588329. [DOI] [PubMed] [Google Scholar]
  18. Gylfe E., Grapengiesser E., Hellman B. Propagation of cytoplasmic Ca2+ oscillations in clusters of pancreatic beta-cells exposed to glucose. Cell Calcium. 1991 Feb-Mar;12(2-3):229–240. doi: 10.1016/0143-4160(91)90023-8. [DOI] [PubMed] [Google Scholar]
  19. Hellman B., Gylfe E., Bergsten P., Grapengiesser E., Lund P. E., Berts A., Tengholm A., Pipeleers D. G., Ling Z. Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia. 1994 Sep;37 (Suppl 2):S11–S20. doi: 10.1007/BF00400821. [DOI] [PubMed] [Google Scholar]
  20. Henquin J. C., Jonas J. C., Gilon P. Functional significance of Ca2+ oscillations in pancreatic beta cells. Diabetes Metab. 1998 Feb;24(1):30–36. [PubMed] [Google Scholar]
  21. Jonkers F. C., Jonas J. C., Gilon P., Henquin J. C. Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J Physiol. 1999 Nov 1;520(Pt 3):839–849. doi: 10.1111/j.1469-7793.1999.00839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lernmark A. The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia. 1974 Oct;10(5):431–438. doi: 10.1007/BF01221634. [DOI] [PubMed] [Google Scholar]
  23. Meda P., Atwater I., Gonçalves A., Bangham A., Orci L., Rojas E. The topography of electrical synchrony among beta-cells in the mouse islet of Langerhans. Q J Exp Physiol. 1984 Oct;69(4):719–735. [PubMed] [Google Scholar]
  24. Meda P., Santos R. M., Atwater I. Direct identification of electrophysiologically monitored cells within intact mouse islets of Langerhans. Diabetes. 1986 Feb;35(2):232–236. doi: 10.2337/diab.35.2.232. [DOI] [PubMed] [Google Scholar]
  25. Meissner H. P. Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature. 1976 Aug 5;262(5568):502–504. doi: 10.1038/262502a0. [DOI] [PubMed] [Google Scholar]
  26. Michaels R. L., Sorenson R. L., Parsons J. A., Sheridan J. D. Prolactin enhances cell-to-cell communication among beta-cells in pancreatic islets. Diabetes. 1987 Oct;36(10):1098–1103. doi: 10.2337/diab.36.10.1098. [DOI] [PubMed] [Google Scholar]
  27. Nadal A., Quesada I., Soria B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol. 1999 May 15;517(Pt 1):85–93. doi: 10.1111/j.1469-7793.1999.0085z.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palti Y., David G. B., Lachov E., Mida Y. H., Schatzberger R. Islets of Langerhans generate wavelike electric activity modulated by glucose concentration. Diabetes. 1996 May;45(5):595–601. doi: 10.2337/diab.45.5.595. [DOI] [PubMed] [Google Scholar]
  29. Perez-Armendariz E., Atwater I., Rojas E. Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans. Biophys J. 1985 Nov;48(5):741–749. doi: 10.1016/S0006-3495(85)83832-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pipeleers D., Kiekens R., Ling Z., Wilikens A., Schuit F. Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia. 1994 Sep;37 (Suppl 2):S57–S64. doi: 10.1007/BF00400827. [DOI] [PubMed] [Google Scholar]
  31. Pipeleers D., in't Veld P. I., Maes E., Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7322–7325. doi: 10.1073/pnas.79.23.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pérez-Armendariz M., Roy C., Spray D. C., Bennett M. V. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J. 1991 Jan;59(1):76–92. doi: 10.1016/S0006-3495(91)82200-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Santos R. M., Rosario L. M., Nadal A., Garcia-Sancho J., Soria B., Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 1991 May;418(4):417–422. doi: 10.1007/BF00550880. [DOI] [PubMed] [Google Scholar]
  34. Sherman A., Rinzel J. Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys J. 1991 Mar;59(3):547–559. doi: 10.1016/S0006-3495(91)82271-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spira M. E., Yarom Y., Zeldes D. Neuronal interactions mediated by neurally evoked changes in the extracellular potassium concentration. J Exp Biol. 1984 Sep;112:179–197. doi: 10.1242/jeb.112.1.179. [DOI] [PubMed] [Google Scholar]
  36. Stokes C. L., Rinzel J. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys J. 1993 Aug;65(2):597–607. doi: 10.1016/S0006-3495(93)81092-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes. 1997 Sep;46(9):1375–1380. doi: 10.2337/diab.46.9.1375. [DOI] [PubMed] [Google Scholar]
  38. Tuckwell H. C., Miura R. M. A mathematical model for spreading cortical depression. Biophys J. 1978 Aug;23(2):257–276. doi: 10.1016/S0006-3495(78)85447-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Valdeolmillos M., Gomis A., Sánchez-Andrés J. V. In vivo synchronous membrane potential oscillations in mouse pancreatic beta-cells: lack of co-ordination between islets. J Physiol. 1996 May 15;493(Pt 1):9–18. doi: 10.1113/jphysiol.1996.sp021361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vozzi C., Ullrich S., Charollais A., Philippe J., Orci L., Meda P. Adequate connexin-mediated coupling is required for proper insulin production. J Cell Biol. 1995 Dec;131(6 Pt 1):1561–1572. doi: 10.1083/jcb.131.6.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES