Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1210–1219. doi: 10.1016/S0006-3495(01)76097-3

Side-chain ionization states in a potassium channel.

K M Ranatunga 1, I H Shrivastava 1, G R Smith 1, M S Sansom 1
PMCID: PMC1301316  PMID: 11222285

Abstract

KcsA is a bacterial K+ channel that is gated by pH. Continuum dielectric calculations on the crystal structure of the channel protein embedded in a low dielectric slab suggest that side chains E71 and D80 of each subunit, which lie adjacent to the selectivity filter region of the channel, form a proton-sharing pair in which E71 is neutral (protonated) and D80 is negatively charged at pH 7. When K+ ions are introduced into the system at their crystallographic positions the pattern of proton sharing is altered. The largest perturbation is for a K+ ion at site S3, i.e., interacting with the carbonyls of T75 and V76. The presence of multiple K+ ions in the filter increases the probability of E71 being ionized and of D80 remaining neutral (i.e., protonated). The ionization states of the protein side chains influence the potential energy profile experienced by a K+ ion as it is translated along the pore axis. In particular, the ionization state of the E71-D80 proton-sharing pair modulates the shape of the potential profile in the vicinity of the selectivity filter. Such reciprocal effects of ion occupancy on side-chain ionization states, and of side-chain ionization states on ion potential energy profiles will complicate molecular dynamics simulations and related studies designed to calculate ion permeation energetics.

Full Text

The Full Text of this article is available as a PDF (167.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adcock C., Smith G. R., Sansom M. S. Electrostatics and the ion selectivity of ligand-gated channels. Biophys J. 1998 Sep;75(3):1211–1222. doi: 10.1016/S0006-3495(98)74040-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adcock C., Smith G. R., Sansom M. S. The nicotinic acetylcholine receptor: from molecular model to single-channel conductance. Eur Biophys J. 2000;29(1):29–37. doi: 10.1007/s002490050248. [DOI] [PubMed] [Google Scholar]
  3. Allen T. W., Kuyucak S., Chung S. H. Molecular dynamics study of the KcsA potassium channel. Biophys J. 1999 Nov;77(5):2502–2516. doi: 10.1016/S0006-3495(99)77086-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
  5. Bashford D., Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol. 1992 Mar 20;224(2):473–486. doi: 10.1016/0022-2836(92)91009-e. [DOI] [PubMed] [Google Scholar]
  6. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  7. Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Capener C. E., Shrivastava I. H., Ranatunga K. M., Forrest L. R., Smith G. R., Sansom M. S. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J. 2000 Jun;78(6):2929–2942. doi: 10.1016/S0006-3495(00)76833-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cha A., Snyder G. E., Selvin P. R., Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 1999 Dec 16;402(6763):809–813. doi: 10.1038/45552. [DOI] [PubMed] [Google Scholar]
  10. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  11. Chen D., Lear J., Eisenberg B. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J. 1997 Jan;72(1):97–116. doi: 10.1016/S0006-3495(97)78650-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cuello L. G., Romero J. G., Cortes D. M., Perozo E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry. 1998 Mar 10;37(10):3229–3236. doi: 10.1021/bi972997x. [DOI] [PubMed] [Google Scholar]
  13. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  14. Glauner K. S., Mannuzzu L. M., Gandhi C. S., Isacoff E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature. 1999 Dec 16;402(6763):813–817. doi: 10.1038/45561. [DOI] [PubMed] [Google Scholar]
  15. Guidoni L., Torre V., Carloni P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry. 1999 Jul 6;38(27):8599–8604. doi: 10.1021/bi990540c. [DOI] [PubMed] [Google Scholar]
  16. Heginbotham L., LeMasurier M., Kolmakova-Partensky L., Miller C. Single streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation. J Gen Physiol. 1999 Oct;114(4):551–560. doi: 10.1085/jgp.114.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jordan P. C., Bacquet R. J., McCammon J. A., Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys J. 1989 Jun;55(6):1041–1052. doi: 10.1016/S0006-3495(89)82903-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  19. Kerr I. D., Son H. S., Sankararamakrishnan R., Sansom M. S. Molecular dynamics simulations of isolated transmembrane helices of potassium channels. Biopolymers. 1996 Oct;39(4):503–515. doi: 10.1002/(SICI)1097-0282(199610)39:4%3C503::AID-BIP3%3E3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  20. MacKinnon R., Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 1990 Oct 12;250(4978):276–279. doi: 10.1126/science.2218530. [DOI] [PubMed] [Google Scholar]
  21. Merritt E. A., Bacon D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 1997;277:505–524. doi: 10.1016/s0076-6879(97)77028-9. [DOI] [PubMed] [Google Scholar]
  22. Meuser D., Splitt H., Wagner R., Schrempf H. Exploring the open pore of the potassium channel from Streptomyces lividans. FEBS Lett. 1999 Dec 3;462(3):447–452. doi: 10.1016/s0014-5793(99)01579-3. [DOI] [PubMed] [Google Scholar]
  23. Moy G., Corry B., Kuyucak S., Chung S. H. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J. 2000 May;78(5):2349–2363. doi: 10.1016/S0006-3495(00)76780-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Patlak J. B. Cooperating to unlock the voltage-dependent K channel. J Gen Physiol. 1999 Mar;113(3):385–388. doi: 10.1085/jgp.113.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
  26. Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
  27. Ranatunga K. M., Kerr I. D., Adcock C., Smith G. R., Sansom M. S. Protein-water-ion interactions in a model of the pore domain of a potassium channel: a simulation study. Biochim Biophys Acta. 1998 Mar 6;1370(1):1–7. doi: 10.1016/s0005-2736(97)00271-x. [DOI] [PubMed] [Google Scholar]
  28. Roux B., Karplus M. Ion transport in a model gramicidin channel. Structure and thermodynamics. Biophys J. 1991 May;59(5):961–981. doi: 10.1016/S0006-3495(91)82311-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
  30. Sansom M. S., Shrivastava I. H., Ranatunga K. M., Smith G. R. Simulations of ion channels--watching ions and water move. Trends Biochem Sci. 2000 Aug;25(8):368–374. doi: 10.1016/s0968-0004(00)01613-3. [DOI] [PubMed] [Google Scholar]
  31. Sansom M. S., Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci. 2000 Nov;21(11):445–451. doi: 10.1016/s0165-6147(00)01553-4. [DOI] [PubMed] [Google Scholar]
  32. Shrivastava I. H., Capener C. E., Forrest L. R., Sansom M. S. Structure and dynamics of K channel pore-lining helices: a comparative simulation study. Biophys J. 2000 Jan;78(1):79–92. doi: 10.1016/S0006-3495(00)76574-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith G. R., Sansom M. S. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor. Biophys J. 1997 Sep;73(3):1364–1381. doi: 10.1016/S0006-3495(97)78169-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wlodek S. T., Antosiewicz J., McCammon J. A. Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories. Protein Sci. 1997 Feb;6(2):373–382. doi: 10.1002/pro.5560060213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
  37. Yellen G. The bacterial K+ channel structure and its implications for neuronal channels. Curr Opin Neurobiol. 1999 Jun;9(3):267–273. doi: 10.1016/s0959-4388(99)80039-7. [DOI] [PubMed] [Google Scholar]
  38. You T. J., Bashford D. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J. 1995 Nov;69(5):1721–1733. doi: 10.1016/S0006-3495(95)80042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. del Camino D., Holmgren M., Liu Y., Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 2000 Jan 20;403(6767):321–325. doi: 10.1038/35002099. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES