Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1230–1237. doi: 10.1016/S0006-3495(01)76099-7

The sodium pump modulates the influence of I(Na) on [Ca2+]i transients in mouse ventricular myocytes.

Z Su 1, K Sugishita 1, M Ritter 1, F Li 1, K W Spitzer 1, W H Barry 1
PMCID: PMC1301318  PMID: 11222287

Abstract

To investigate whether activity of the sarcolemmal Na pump modulates the influence of sodium current on excitation-contraction (E-C) coupling, we measured [Ca(2+)](i) transients (fluo-3) in single voltage-clamped mouse ventricular myocytes ([Na+](pip) = 15 or 0 mM) when the Na pump was activated (4.4 mM K(+)(o)) and during abrupt inhibition of the pump by exposure to 0 K with a rapid solution-switcher device. After induction of steady state [Ca2+](i) transients by conditioning voltage pulses (0.25 Hz), inhibition of the Na pump for 1.5 s immediately before and continuing during a voltage pulse (200 ms, -80 to 0 mV) caused a significant increase (15 +/- 2%; n = 16; p < 0.01) in peak systolic [Ca2+](i) when [Na+](pip) was 15 mM. In the absence of sodium current (I(Na), which was blocked by 60 microM tetrodotoxin (TTX)), inhibition of the Na pump immediately before and during a voltage pulse did not result in an increase in peak systolic [Ca2+](i). Abrupt blockade of I(Na) during a single test pulse with TTX caused a slight decrease in peak [Ca2+](i), whether the pump was active (9%) or inhibited (10%). With the reverse-mode Na/Ca exchange inhibited by KB-R 7943, inhibition of the Na pump failed to increase the magnitude of the peak systolic [Ca2+](i) (4 +/- 1%; p = NS) when [Na+](pip) was 15 mM. When [Na+](pip) was 0 mM, the amplitude of the peak systolic [Ca2+](i) was not altered by abrupt inhibition of the Na pump immediately before and during a voltage pulse. These findings in adult mouse ventricular myocytes indicate the Na pump can modulate the influence of I(Na) on E-C coupling in a single beat and provide additional evidence for the existence of Na fuzzy space, where [Na+] can significantly modulate Ca2+ influx via reverse Na/Ca exchange.

Full Text

The Full Text of this article is available as a PDF (106.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon A., Hamlyn J. M., Blaustein M. P. Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+). Am J Physiol Heart Circ Physiol. 2000 Aug;279(2):H679–H691. doi: 10.1152/ajpheart.2000.279.2.H679. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Bridge J. H. Intracellular calcium homeostasis in cardiac myocytes. Circulation. 1993 Jun;87(6):1806–1815. doi: 10.1161/01.cir.87.6.1806. [DOI] [PubMed] [Google Scholar]
  3. Barry W. H., Hasin Y., Smith T. W. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res. 1985 Feb;56(2):231–241. doi: 10.1161/01.res.56.2.231. [DOI] [PubMed] [Google Scholar]
  4. Bers D. M., Bridge J. H. Effect of acetylstrophanthidin on twitches, microscopic tension fluctuations and cooling contractures in rabbit ventricle. J Physiol. 1988 Oct;404:53–69. doi: 10.1113/jphysiol.1988.sp017278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bers D. M. Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na. J Gen Physiol. 1987 Oct;90(4):479–504. doi: 10.1085/jgp.90.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bielen F. V., Glitsch H. G., Verdonck F. Changes of the subsarcolemmal Na+ concentration in internally perfused cardiac cells. Biochim Biophys Acta. 1991 Jun 18;1065(2):269–271. doi: 10.1016/0005-2736(91)90239-5. [DOI] [PubMed] [Google Scholar]
  7. Bouchard R. A., Clark R. B., Giles W. R. Role of sodium-calcium exchange in activation of contraction in rat ventricle. J Physiol. 1993 Dec;472:391–413. doi: 10.1113/jphysiol.1993.sp019953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carmeliet E. A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res. 1992 May;26(5):433–442. doi: 10.1093/cvr/26.5.433. [DOI] [PubMed] [Google Scholar]
  9. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hancox J. C., Levi A. J. Calcium transients which accompany the activation of sodium current in rat ventricular myocytes at 37 degrees C: a trigger role for reverse Na-Ca exchange activated by membrane potential? Pflugers Arch. 1995 Oct;430(6):887–893. doi: 10.1007/BF01837401. [DOI] [PubMed] [Google Scholar]
  12. Hryshko L. V., Philipson K. D. Sodium-calcium exchange: recent advances. Basic Res Cardiol. 1997;92 (Suppl 1):45–51. doi: 10.1007/BF00794067. [DOI] [PubMed] [Google Scholar]
  13. Iwamoto T., Watano T., Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem. 1996 Sep 13;271(37):22391–22397. doi: 10.1074/jbc.271.37.22391. [DOI] [PubMed] [Google Scholar]
  14. James P. F., Grupp I. L., Grupp G., Woo A. L., Askew G. R., Croyle M. L., Walsh R. A., Lingrel J. B. Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell. 1999 May;3(5):555–563. doi: 10.1016/s1097-2765(00)80349-4. [DOI] [PubMed] [Google Scholar]
  15. Kohomoto O., Levi A. J., Bridge J. H. Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ Res. 1994 Mar;74(3):550–554. doi: 10.1161/01.res.74.3.550. [DOI] [PubMed] [Google Scholar]
  16. Leblanc N., Hume J. R. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science. 1990 Apr 20;248(4953):372–376. doi: 10.1126/science.2158146. [DOI] [PubMed] [Google Scholar]
  17. Lederer W. J., Niggli E., Hadley R. W. Sodium-calcium exchange in excitable cells: fuzzy space. Science. 1990 Apr 20;248(4953):283–283. doi: 10.1126/science.2326638. [DOI] [PubMed] [Google Scholar]
  18. Levesque P. C., Leblanc N., Hume J. R. Release of calcium from guinea pig cardiac sarcoplasmic reticulum induced by sodium-calcium exchange. Cardiovasc Res. 1994 Mar;28(3):370–378. doi: 10.1093/cvr/28.3.370. [DOI] [PubMed] [Google Scholar]
  19. Levi A. J., Brooksby P., Hancox J. C. A role for depolarisation induced calcium entry on the Na-Ca exchange in triggering intracellular calcium release and contraction in rat ventricular myocytes. Cardiovasc Res. 1993 Sep;27(9):1677–1690. doi: 10.1093/cvr/27.9.1677. [DOI] [PubMed] [Google Scholar]
  20. Li Z. P., Burke E. P., Frank J. S., Bennett V., Philipson K. D. The cardiac Na+-Ca2+ exchanger binds to the cytoskeletal protein ankyrin. J Biol Chem. 1993 Jun 5;268(16):11489–11491. [PubMed] [Google Scholar]
  21. Lipp P., Niggli E. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol. 1994 Feb 1;474(3):439–446. doi: 10.1113/jphysiol.1994.sp020035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Litwin S. E., Li J., Bridge J. H. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J. 1998 Jul;75(1):359–371. doi: 10.1016/S0006-3495(98)77520-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Main M. J., Grantham C. J., Cannell M. B. Changes in subsarcolemmal sodium concentration measured by Na-Ca exchanger activity during Na-pump inhibition and beta-adrenergic stimulation in guinea-pig ventricular myocytes. Pflugers Arch. 1997 Dec;435(1):112–118. doi: 10.1007/s004240050490. [DOI] [PubMed] [Google Scholar]
  24. Nuss H. B., Houser S. R. Sodium-calcium exchange-mediated contractions in feline ventricular myocytes. Am J Physiol. 1992 Oct;263(4 Pt 2):H1161–H1169. doi: 10.1152/ajpheart.1992.263.4.H1161. [DOI] [PubMed] [Google Scholar]
  25. Satoh H., Ginsburg K. S., Qing K., Terada H., Hayashi H., Bers D. M. KB-R7943 block of Ca(2+) influx via Na(+)/Ca(2+) exchange does not alter twitches or glycoside inotropy but prevents Ca(2+) overload in rat ventricular myocytes. Circulation. 2000 Mar 28;101(12):1441–1446. doi: 10.1161/01.cir.101.12.1441. [DOI] [PubMed] [Google Scholar]
  26. Semb S. O., Sejersted O. M. Fuzzy space and control of Na+, K(+)-pump rate in heart and skeletal muscle. Acta Physiol Scand. 1996 Mar;156(3):213–225. doi: 10.1046/j.1365-201X.1996.211000.x. [DOI] [PubMed] [Google Scholar]
  27. Sham J. S., Cleemann L., Morad M. Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na(+)-Ca2+ exchange. Science. 1992 Feb 14;255(5046):850–853. doi: 10.1126/science.1311127. [DOI] [PubMed] [Google Scholar]
  28. Srinivasan Y., Lewallen M., Angelides K. J. Mapping the binding site on ankyrin for the voltage-dependent sodium channel from brain. J Biol Chem. 1992 Apr 15;267(11):7483–7489. [PubMed] [Google Scholar]
  29. Su Z., Bridge J. H., Philipson K. D., Spitzer K. W., Barry W. H. Quantitation of Na/Ca exchanger function in single ventricular myocytes. J Mol Cell Cardiol. 1999 May;31(5):1125–1135. doi: 10.1006/jmcc.1999.0949. [DOI] [PubMed] [Google Scholar]
  30. Su Z., Zou A., Nonaka A., Zubair I., Sanguinetti M. C., Barry W. H. Influence of prior Na+ pump activity on pump and Na+/Ca2+ exchange currents in mouse ventricular myocytes. Am J Physiol. 1998 Nov;275(5 Pt 2):H1808–H1817. doi: 10.1152/ajpheart.1998.275.5.H1808. [DOI] [PubMed] [Google Scholar]
  31. Vites A. M., Wasserstrom J. A. Fast sodium influx provides an initial step to trigger contractions in cat ventricle. Am J Physiol. 1996 Aug;271(2 Pt 2):H674–H686. doi: 10.1152/ajpheart.1996.271.2.H674. [DOI] [PubMed] [Google Scholar]
  32. Watano T., Kimura J., Morita T., Nakanishi H. A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol. 1996 Oct;119(3):555–563. doi: 10.1111/j.1476-5381.1996.tb15708.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yao A., Spitzer K. W., Ito N., Zaniboni M., Lorell B. H., Barry W. H. The restriction of diffusion of cations at the external surface of cardiac myocytes varies between species. Cell Calcium. 1997 Dec;22(6):431–438. doi: 10.1016/s0143-4160(97)90070-1. [DOI] [PubMed] [Google Scholar]
  34. Yao A., Su Z., Nonaka A., Zubair I., Lu L., Philipson K. D., Bridge J. H., Barry W. H. Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes. Circ Res. 1998 Apr 6;82(6):657–665. doi: 10.1161/01.res.82.6.657. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES