Abstract
At least three genes encode T-type calcium channel alpha(1) subunits, and identification of cDNA transcripts provided evidence that molecular diversity of these channels can be further enhanced by alternative splicing mechanisms, especially for the alpha(1G) subunit (Ca(V)3.1). Using whole-cell patch-clamp procedures, we have investigated the electrophysiological properties of five isoforms of the human alpha(1G) subunit that display a distinct III-IV linker, namely, alpha(1G-a), alpha(1G-b), and alpha(1G-bc), as well as a distinct II-III linker, namely, alpha(1G-ae), alpha(1G-be), as expressed in HEK-293 cells. We report that insertion e within the II-III linker specifically modulates inactivation, steady-state kinetics, and modestly recovery from inactivation, whereas alternative splicing within the III-IV linker affects preferentially kinetics and voltage dependence of activation, as well as deactivation and inactivation. By using voltage-clamp protocols mimicking neuronal activities, such as cerebellar train of action potentials and thalamic low-threshold spike, we describe that inactivation properties of alpha(1G-a) and alpha(1G-ae) isoforms can support channel behaviors reminiscent to those described in native neurons. Altogether, these data demonstrate that expression of distinct variants for the T-type alpha(1G) subunit can account for specific low-voltage-activated currents observed in neuronal tissues.
Full Text
The Full Text of this article is available as a PDF (247.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams B., Tanabe T. Structural regions of the cardiac Ca channel alpha subunit involved in Ca-dependent inactivation. J Gen Physiol. 1997 Oct;110(4):379–389. doi: 10.1085/jgp.110.4.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aizenman C. D., Linden D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol. 1999 Oct;82(4):1697–1709. doi: 10.1152/jn.1999.82.4.1697. [DOI] [PubMed] [Google Scholar]
- Bean B. P. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–384. doi: 10.1146/annurev.ph.51.030189.002055. [DOI] [PubMed] [Google Scholar]
- Bennett E. S. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels. Biophys J. 1999 Dec;77(6):2999–3009. doi: 10.1016/S0006-3495(99)77131-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourinet E., Soong T. W., Sutton K., Slaymaker S., Mathews E., Monteil A., Zamponi G. W., Nargeot J., Snutch T. P. Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci. 1999 May;2(5):407–415. doi: 10.1038/8070. [DOI] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9;310(5977):501–502. doi: 10.1038/310501a0. [DOI] [PubMed] [Google Scholar]
- Chemin J., Monteil A., Briquaire C., Richard S., Perez-Reyes E., Nargeot J., Lory P. Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett. 2000 Jul 28;478(1-2):166–172. doi: 10.1016/s0014-5793(00)01832-9. [DOI] [PubMed] [Google Scholar]
- Chen C. F., Hess P. Mechanism of gating of T-type calcium channels. J Gen Physiol. 1990 Sep;96(3):603–630. doi: 10.1085/jgp.96.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cribbs L. L., Lee J. H., Yang J., Satin J., Zhang Y., Daud A., Barclay J., Williamson M. P., Fox M., Rees M. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 1998 Jul 13;83(1):103–109. doi: 10.1161/01.res.83.1.103. [DOI] [PubMed] [Google Scholar]
- Cribbs LL, Gomora JC, Daud AN, Lee J, Perez-Reyes E. Corrigendum to: molecular cloning and functional expression of ca(v)3.1c, a T-type calcium channel from human brain. FEBS Lett. 2000 Mar 31;470(3):378–378. doi: 10.1016/s0014-5793(00)01326-0. [DOI] [PubMed] [Google Scholar]
- Destexhe A., Neubig M., Ulrich D., Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci. 1998 May 15;18(10):3574–3588. doi: 10.1523/JNEUROSCI.18-10-03574.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa T., Ito H., Nitta J., Tsujino M., Adachi S., Hiroe M., Marumo F., Sawanobori T., Hiraoka M. Endothelin-1 enhances calcium entry through T-type calcium channels in cultured neonatal rat ventricular myocytes. Circ Res. 1992 Nov;71(5):1242–1253. doi: 10.1161/01.res.71.5.1242. [DOI] [PubMed] [Google Scholar]
- Grabowski P. J. Splicing regulation in neurons: tinkering with cell-specific control. Cell. 1998 Mar 20;92(6):709–712. doi: 10.1016/s0092-8674(00)81399-9. [DOI] [PubMed] [Google Scholar]
- Gutnick M. J., Yarom Y. Low threshold calcium spikes, intrinsic neuronal oscillation and rhythm generation in the CNS. J Neurosci Methods. 1989 May;28(1-2):93–99. doi: 10.1016/0165-0270(89)90014-9. [DOI] [PubMed] [Google Scholar]
- Herlitze S., Hockerman G. H., Scheuer T., Catterall W. A. Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel alpha1A subunit. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1512–1516. doi: 10.1073/pnas.94.4.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hines M. L., Carnevale N. T. The NEURON simulation environment. Neural Comput. 1997 Aug 15;9(6):1179–1209. doi: 10.1162/neco.1997.9.6.1179. [DOI] [PubMed] [Google Scholar]
- Hobom M., Dai S., Marais E., Lacinova L., Hofmann F., Klugbauer N. Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci. 2000 Apr;12(4):1217–1226. doi: 10.1046/j.1460-9568.2000.01009.x. [DOI] [PubMed] [Google Scholar]
- Huguenard J. R. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–348. doi: 10.1146/annurev.ph.58.030196.001553. [DOI] [PubMed] [Google Scholar]
- Klugbauer N., Marais E., Lacinová L., Hofmann F. A T-type calcium channel from mouse brain. Pflugers Arch. 1999 Apr;437(5):710–715. doi: 10.1007/s004240050836. [DOI] [PubMed] [Google Scholar]
- Klöckner U., Lee J. H., Cribbs L. L., Daud A., Hescheler J., Pereverzev A., Perez-Reyes E., Schneider T. Comparison of the Ca2 + currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2 + channels. Eur J Neurosci. 1999 Dec;11(12):4171–4178. doi: 10.1046/j.1460-9568.1999.00849.x. [DOI] [PubMed] [Google Scholar]
- Kozlov A. S., McKenna F., Lee J. H., Cribbs L. L., Perez-Reyes E., Feltz A., Lambert R. C. Distinct kinetics of cloned T-type Ca2 + channels lead to differential Ca2 + entry and frequency-dependence during mock action potentials. Eur J Neurosci. 1999 Dec;11(12):4149–4158. doi: 10.1046/j.1460-9568.1999.00841.x. [DOI] [PubMed] [Google Scholar]
- Lambert R. C., McKenna F., Maulet Y., Talley E. M., Bayliss D. A., Cribbs L. L., Lee J. H., Perez-Reyes E., Feltz A. Low-voltage-activated Ca2+ currents are generated by members of the CavT subunit family (alpha1G/H) in rat primary sensory neurons. J Neurosci. 1998 Nov 1;18(21):8605–8613. doi: 10.1523/JNEUROSCI.18-21-08605.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. H., Daud A. N., Cribbs L. L., Lacerda A. E., Pereverzev A., Klöckner U., Schneider T., Perez-Reyes E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999 Mar 15;19(6):1912–1921. doi: 10.1523/JNEUROSCI.19-06-01912.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leuranguer V., Monteil A., Bourinet E., Dayanithi G., Nargeot J. T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2540–H2548. doi: 10.1152/ajpheart.2000.279.5.H2540. [DOI] [PubMed] [Google Scholar]
- Lin Z., Lin Y., Schorge S., Pan J. Q., Beierlein M., Lipscombe D. Alternative splicing of a short cassette exon in alpha1B generates functionally distinct N-type calcium channels in central and peripheral neurons. J Neurosci. 1999 Jul 1;19(13):5322–5331. doi: 10.1523/JNEUROSCI.19-13-05322.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981 Jun;315:569–584. doi: 10.1113/jphysiol.1981.sp013764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maturana A. D., Burnay M. M., Capponi A. M., Vallotton M. B., Rossier M. F. Angiotensin II type 1 receptor activation modulates L- and T-type calcium channel activity through distinct mechanisms in bovine adrenal glomerulosa cells. J Recept Signal Transduct Res. 1999 Jan-Jul;19(1-4):509–520. doi: 10.3109/10799899909036668. [DOI] [PubMed] [Google Scholar]
- McCormick D. A., Huguenard J. R. A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol. 1992 Oct;68(4):1384–1400. doi: 10.1152/jn.1992.68.4.1384. [DOI] [PubMed] [Google Scholar]
- Mittman S., Guo J., Agnew W. S. Structure and alternative splicing of the gene encoding alpha1G, a human brain T calcium channel alpha1 subunit. Neurosci Lett. 1999 Oct 29;274(3):143–146. doi: 10.1016/s0304-3940(99)00716-8. [DOI] [PubMed] [Google Scholar]
- Mittman S., Guo J., Emerick M. C., Agnew W. S. Structure and alternative splicing of the gene encoding alpha1I, a human brain T calcium channel alpha1 subunit. Neurosci Lett. 1999 Jul 16;269(3):121–124. doi: 10.1016/s0304-3940(99)00319-5. [DOI] [PubMed] [Google Scholar]
- Monteil A., Chemin J., Bourinet E., Mennessier G., Lory P., Nargeot J. Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem. 2000 Mar 3;275(9):6090–6100. doi: 10.1074/jbc.275.9.6090. [DOI] [PubMed] [Google Scholar]
- Monteil A., Chemin J., Leuranguer V., Altier C., Mennessier G., Bourinet E., Lory P., Nargeot J. Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem. 2000 Jun 2;275(22):16530–16535. doi: 10.1074/jbc.C000090200. [DOI] [PubMed] [Google Scholar]
- Patton D. E., West J. W., Catterall W. A., Goldin A. L. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905–10909. doi: 10.1073/pnas.89.22.10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Reyes E., Cribbs L. L., Daud A., Lacerda A. E., Barclay J., Williamson M. P., Fox M., Rees M., Lee J. H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature. 1998 Feb 26;391(6670):896–900. doi: 10.1038/36110. [DOI] [PubMed] [Google Scholar]
- Raman I. M., Bean B. P. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci. 1999 Mar 1;19(5):1663–1674. doi: 10.1523/JNEUROSCI.19-05-01663.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall A. D., Tsien R. W. Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology. 1997 Jul;36(7):879–893. doi: 10.1016/s0028-3908(97)00086-5. [DOI] [PubMed] [Google Scholar]
- Rettig J., Sheng Z. H., Kim D. K., Hodson C. D., Snutch T. P., Catterall W. A. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7363–7368. doi: 10.1073/pnas.93.14.7363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder J. E., Fischbach P. S., Zheng D., McCleskey E. W. Activation of mu opioid receptors inhibits transient high- and low-threshold Ca2+ currents, but spares a sustained current. Neuron. 1991 Jan;6(1):13–20. doi: 10.1016/0896-6273(91)90117-i. [DOI] [PubMed] [Google Scholar]
- Serrano J. R., Perez-Reyes E., Jones S. W. State-dependent inactivation of the alpha1G T-type calcium channel. J Gen Physiol. 1999 Aug;114(2):185–201. doi: 10.1085/jgp.114.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soldatov N. M., Zühlke R. D., Bouron A., Reuter H. Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40-42 in alpha1C subunit in the kinetics and Ca2+ dependence of inactivation. J Biol Chem. 1997 Feb 7;272(6):3560–3566. doi: 10.1074/jbc.272.6.3560. [DOI] [PubMed] [Google Scholar]
- Stotz S. C., Hamid J., Spaetgens R. L., Jarvis S. E., Zamponi G. W. Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J Biol Chem. 2000 Aug 11;275(32):24575–24582. doi: 10.1074/jbc.M000399200. [DOI] [PubMed] [Google Scholar]
- Sun Q. Q., Dale N. G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca2+ channels. J Neurosci. 1999 Feb 1;19(3):890–899. doi: 10.1523/JNEUROSCI.19-03-00890.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
- Walker D., De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 1998 Apr;21(4):148–154. doi: 10.1016/s0166-2236(97)01200-9. [DOI] [PubMed] [Google Scholar]
- Williams M. E., Washburn M. S., Hans M., Urrutia A., Brust P. F., Prodanovich P., Harpold M. M., Stauderman K. A. Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem. 1999 Feb;72(2):791–799. doi: 10.1046/j.1471-4159.1999.0720791.x. [DOI] [PubMed] [Google Scholar]
- Zhuravleva S. O., Kostyuk P. G., Shuba Y. M. Divalent cation selectivity of the subtypes of low voltage-activated Ca2+ channels in thalamic neurons. Neuroreport. 1999 Feb 25;10(3):651–657. doi: 10.1097/00001756-199902250-00038. [DOI] [PubMed] [Google Scholar]