Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1251–1261. doi: 10.1016/S0006-3495(01)76101-2

Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents.

Z Nusser 1, D Naylor 1, I Mody 1
PMCID: PMC1301320  PMID: 11222289

Abstract

Synaptic transmission is characterized by a remarkable trial-to-trial variability in the postsynaptic response, influencing the way in which information is processed in neuronal networks. This variability may originate from the probabilistic nature of quantal transmitter release, from the stochastic behavior of the receptors, or from the fluctuation of the transmitter concentration in the cleft. We combined nonstationary noise analysis and modeling techniques to estimate the contribution of transmitter fluctuation to miniature inhibitory postsynaptic current (mIPSC) variability. A substantial variability (approximately 30%) in mIPSC decay was found in all cell types studied (neocortical layer2/3 pyramidal cells, granule cells of the olfactory bulb, and interneurons of the cerebellar molecular layer). This large variability was not solely the consequence of the expression of multiple types of GABA(A) receptors, as a similar mIPSC decay variability was observed in cerebellar interneurons that express only a single type (alpha(1)beta(2)gamma(2)) of GABA(A) receptor. At large synapses on these cells, all variance in mIPSC decay could be accounted for by the stochastic behavior of approximately 36 pS channels, consistent with the conductance of alpha(1)beta(2)gamma(2) GABA(A) receptors at physiological temperatures. In contrast, at small synapses, a significant amount of variability in the synaptic cleft GABA transient had to be present to account for the additional variance in IPSC decay over that produced by stochastic channel openings. Thus, our results suggest a synapse-specific contribution of the variation of the spatiotemporal profile of GABA to the decay of IPSCs.

Full Text

The Full Text of this article is available as a PDF (155.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Stevens C. F. An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10380–10383. doi: 10.1073/pnas.91.22.10380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angelotti T. P., Macdonald R. L. Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci. 1993 Apr;13(4):1429–1440. doi: 10.1523/JNEUROSCI.13-04-01429.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auger C., Kondo S., Marty A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J Neurosci. 1998 Jun 15;18(12):4532–4547. doi: 10.1523/JNEUROSCI.18-12-04532.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Auger C., Marty A. Heterogeneity of functional synaptic parameters among single release sites. Neuron. 1997 Jul;19(1):139–150. doi: 10.1016/s0896-6273(00)80354-2. [DOI] [PubMed] [Google Scholar]
  5. Bekkers J. M., Richerson G. B., Stevens C. F. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5359–5362. doi: 10.1073/pnas.87.14.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergles D. E., Diamond J. S., Jahr C. E. Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol. 1999 Jun;9(3):293–298. doi: 10.1016/s0959-4388(99)80043-9. [DOI] [PubMed] [Google Scholar]
  7. Bier M., Kits K. S., Borst J. G. Relation between rise times and amplitudes of GABAergic postsynaptic currents. J Neurophysiol. 1996 Mar;75(3):1008–1012. doi: 10.1152/jn.1996.75.3.1008. [DOI] [PubMed] [Google Scholar]
  8. Borst J. G., Lodder J. C., Kits K. S. Large amplitude variability of GABAergic IPSCs in melanotropes from Xenopus laevis: evidence that quantal size differs between synapses. J Neurophysiol. 1994 Feb;71(2):639–655. doi: 10.1152/jn.1994.71.2.639. [DOI] [PubMed] [Google Scholar]
  9. Brickley S. G., Cull-Candy S. G., Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol. 1996 Dec 15;497(Pt 3):753–759. doi: 10.1113/jphysiol.1996.sp021806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brickley S. G., Cull-Candy S. G., Farrant M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci. 1999 Apr 15;19(8):2960–2973. doi: 10.1523/JNEUROSCI.19-08-02960.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clements J. D., Lester R. A., Tong G., Jahr C. E., Westbrook G. L. The time course of glutamate in the synaptic cleft. Science. 1992 Nov 27;258(5087):1498–1501. doi: 10.1126/science.1359647. [DOI] [PubMed] [Google Scholar]
  12. Clements J. D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 1996 May;19(5):163–171. doi: 10.1016/s0166-2236(96)10024-2. [DOI] [PubMed] [Google Scholar]
  13. Colquhoun D., Jonas P., Sakmann B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol. 1992 Dec;458:261–287. doi: 10.1113/jphysiol.1992.sp019417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. De Koninck Y., Mody I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J Neurophysiol. 1994 Apr;71(4):1318–1335. doi: 10.1152/jn.1994.71.4.1318. [DOI] [PubMed] [Google Scholar]
  16. Faber D. S., Young W. S., Legendre P., Korn H. Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. Science. 1992 Nov 27;258(5087):1494–1498. doi: 10.1126/science.1279813. [DOI] [PubMed] [Google Scholar]
  17. Forti L., Bossi M., Bergamaschi A., Villa A., Malgaroli A. Loose-patch recordings of single quanta at individual hippocampal synapses. Nature. 1997 Aug 28;388(6645):874–878. doi: 10.1038/42251. [DOI] [PubMed] [Google Scholar]
  18. Fritschy J. M., Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol. 1995 Aug 14;359(1):154–194. doi: 10.1002/cne.903590111. [DOI] [PubMed] [Google Scholar]
  19. Fritschy J. M., Weinmann O., Wenzel A., Benke D. Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol. 1998 Jan 12;390(2):194–210. [PubMed] [Google Scholar]
  20. Glavinovíc M. I. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents. Pflugers Arch. 1999 Feb;437(3):462–470. doi: 10.1007/s004240050802. [DOI] [PubMed] [Google Scholar]
  21. Jones M. V., Westbrook G. L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron. 1995 Jul;15(1):181–191. doi: 10.1016/0896-6273(95)90075-6. [DOI] [PubMed] [Google Scholar]
  22. Jones M. V., Westbrook G. L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 1996 Mar;19(3):96–101. doi: 10.1016/s0166-2236(96)80037-3. [DOI] [PubMed] [Google Scholar]
  23. Koulen P., Sassoè-Pognetto M., Grünert U., Wässle H. Selective clustering of GABA(A) and glycine receptors in the mammalian retina. J Neurosci. 1996 Mar 15;16(6):2127–2140. doi: 10.1523/JNEUROSCI.16-06-02127.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kruk P. J., Korn H., Faber D. S. The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J. 1997 Dec;73(6):2874–2890. doi: 10.1016/S0006-3495(97)78316-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lisman J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 1997 Jan;20(1):38–43. doi: 10.1016/S0166-2236(96)10070-9. [DOI] [PubMed] [Google Scholar]
  26. Llano I., Gerschenfeld H. M. Inhibitory synaptic currents in stellate cells of rat cerebellar slices. J Physiol. 1993 Aug;468:177–200. doi: 10.1113/jphysiol.1993.sp019766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maconochie D. J., Zempel J. M., Steinbach J. H. How quickly can GABAA receptors open? Neuron. 1994 Jan;12(1):61–71. doi: 10.1016/0896-6273(94)90152-x. [DOI] [PubMed] [Google Scholar]
  28. McAllister A. K., Stevens C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6173–6178. doi: 10.1073/pnas.100126497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meldolesi J. Regulated exocytosis in neurons and neurosecretory cells: structural events and expression competence. J Physiol Paris. 1998 Apr;92(2):119–121. doi: 10.1016/S0928-4257(98)80148-4. [DOI] [PubMed] [Google Scholar]
  30. Mozrzymas J. W., Barberis A., Michalak K., Cherubini E. Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAA receptors. J Neurosci. 1999 Apr 1;19(7):2474–2488. doi: 10.1523/JNEUROSCI.19-07-02474.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murphy T. H., Baraban J. M., Wier W. G. Mapping miniature synaptic currents to single synapses using calcium imaging reveals heterogeneity in postsynaptic output. Neuron. 1995 Jul;15(1):159–168. doi: 10.1016/0896-6273(95)90073-x. [DOI] [PubMed] [Google Scholar]
  32. Nusser Z., Ahmad Z., Tretter V., Fuchs K., Wisden W., Sieghart W., Somogyi P. Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the alpha6 subunit gene. Eur J Neurosci. 1999 May;11(5):1685–1697. doi: 10.1046/j.1460-9568.1999.00581.x. [DOI] [PubMed] [Google Scholar]
  33. Nusser Z., Cull-Candy S., Farrant M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron. 1997 Sep;19(3):697–709. doi: 10.1016/s0896-6273(00)80382-7. [DOI] [PubMed] [Google Scholar]
  34. Nusser Z., Hájos N., Somogyi P., Mody I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature. 1998 Sep 10;395(6698):172–177. doi: 10.1038/25999. [DOI] [PubMed] [Google Scholar]
  35. Nusser Z., Sieghart W., Benke D., Fritschy J. M., Somogyi P. Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11939–11944. doi: 10.1073/pnas.93.21.11939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nusser Z., Sieghart W., Mody I. Differential regulation of synaptic GABAA receptors by cAMP-dependent protein kinase in mouse cerebellar and olfactory bulb neurones. J Physiol. 1999 Dec 1;521(Pt 2):421–435. doi: 10.1111/j.1469-7793.1999.00421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Perrais D., Ropert N. Effect of zolpidem on miniature IPSCs and occupancy of postsynaptic GABAA receptors in central synapses. J Neurosci. 1999 Jan 15;19(2):578–588. doi: 10.1523/JNEUROSCI.19-02-00578.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Persohn E., Malherbe P., Richards J. G. Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J Comp Neurol. 1992 Dec 8;326(2):193–216. doi: 10.1002/cne.903260204. [DOI] [PubMed] [Google Scholar]
  39. Redman S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev. 1990 Jan;70(1):165–198. doi: 10.1152/physrev.1990.70.1.165. [DOI] [PubMed] [Google Scholar]
  40. Sato K., Kiyama H., Tohyama M. The differential expression patterns of messenger RNAs encoding non-N-methyl-D-aspartate glutamate receptor subunits (GluR1-4) in the rat brain. Neuroscience. 1993 Feb;52(3):515–539. doi: 10.1016/0306-4522(93)90403-3. [DOI] [PubMed] [Google Scholar]
  41. Schachter S. C. Tiagabine. Epilepsia. 1999;40 (Suppl 5):S17–S22. doi: 10.1111/j.1528-1157.1999.tb00915.x. [DOI] [PubMed] [Google Scholar]
  42. Silver R. A., Cull-Candy S. G., Takahashi T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J Physiol. 1996 Jul 1;494(Pt 1):231–250. doi: 10.1113/jphysiol.1996.sp021487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stevens C. F. Quantal release of neurotransmitter and long-term potentiation. Cell. 1993 Jan;72 (Suppl):55–63. doi: 10.1016/s0092-8674(05)80028-5. [DOI] [PubMed] [Google Scholar]
  44. Suzdak P. D., Frederiksen K., Andersen K. E., Sørensen P. O., Knutsen L. J., Nielsen E. B. NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol. 1992 Dec 2;224(2-3):189–198. doi: 10.1016/0014-2999(92)90804-d. [DOI] [PubMed] [Google Scholar]
  45. Traynelis S. F., Jaramillo F. Getting the most out of noise in the central nervous system. Trends Neurosci. 1998 Apr;21(4):137–145. doi: 10.1016/s0166-2236(98)01238-7. [DOI] [PubMed] [Google Scholar]
  46. Traynelis S. F., Silver R. A., Cull-Candy S. G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron. 1993 Aug;11(2):279–289. doi: 10.1016/0896-6273(93)90184-s. [DOI] [PubMed] [Google Scholar]
  47. Valtorta F., Fesce R., Grohovaz F., Haimann C., Hurlbut W. P., Iezzi N., Torri Tarelli F., Villa A., Ceccarelli B. Neurotransmitter release and synaptic vesicle recycling. Neuroscience. 1990;35(3):477–489. doi: 10.1016/0306-4522(90)90323-v. [DOI] [PubMed] [Google Scholar]
  48. Wisden W., Laurie D. J., Monyer H., Seeburg P. H. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992 Mar;12(3):1040–1062. doi: 10.1523/JNEUROSCI.12-03-01040.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zador A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol. 1998 Mar;79(3):1219–1229. doi: 10.1152/jn.1998.79.3.1219. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES