Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1262–1279. doi: 10.1016/S0006-3495(01)76102-4

Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel.

C J Huang 1, E Moczydlowski 1
PMCID: PMC1301321  PMID: 11222290

Abstract

We report that voltage-gated Na+ channels (Na(V)) from rat muscle (mu1) expressed in HEK293 cells exhibit anomalous rectification of whole-cell outward current under conditions of symmetrical Na+. This behavior gradually fades with time after membrane break-in, as if a diffusible blocking substance in the cytoplasm is slowly diluted by the pipette solution. The degree of such block and rectification is markedly altered by various mutations of the conserved Lys(III) residue in Domain III of the Na(V) channel selectivity filter (DEKA locus), a principal determinant of inorganic ion selectivity and organic cation permeation. Using whole-cell and macropatch recording techniques, we show that two ubiquitous polyamines, spermine and spermidine, are potent voltage-dependent cytoplasmic blockers of mu1 Na(V) current that exhibit relief of block at high positive voltage, a phenomenon that is also enhanced by certain mutations of the Lys(III) residue. In addition, we find that polyamines alter the apparent rate of macroscopic inactivation and exhibit a use-dependent blocking phenomenon reminiscent of the action of local anesthetics. In the presence of a physiological Na+/K+ gradient, spermine also inhibits inward Na(V) current and shifts the voltage dependence of activation and inactivation. Similarities between the endogenous blocking phenomenon observed in whole cells and polyamine block characterized in excised patches suggest that polyamines or related metabolites may function as endogenous modulators of Na(V) channel activity.

Full Text

The Full Text of this article is available as a PDF (304.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMANN R., WERLE E. Uber Komplexe von Heparin mit Histamin und anderen Di- und Polyaminen. Klin Wochenschr. 1956 Feb 15;34(7-8):207–209. doi: 10.1007/BF01476928. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Croop R. S. Simulation of Na channel inactivation by thiazine dyes. J Gen Physiol. 1982 Nov;80(5):641–662. doi: 10.1085/jgp.80.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Hille B. Voltage-gated ion channels and electrical excitability. Neuron. 1998 Mar;20(3):371–380. doi: 10.1016/s0896-6273(00)80981-2. [DOI] [PubMed] [Google Scholar]
  4. Blaustein R. O., Finkelstein A. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Effects on macroscopic conductance. J Gen Physiol. 1990 Nov;96(5):905–919. doi: 10.1085/jgp.96.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bähring R., Bowie D., Benveniste M., Mayer M. L. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J Physiol. 1997 Aug 1;502(Pt 3):575–589. doi: 10.1111/j.1469-7793.1997.575bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cahalan M. D., Almers W. Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. Biophys J. 1979 Jul;27(1):57–73. doi: 10.1016/S0006-3495(79)85202-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Catterall W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000 Apr;26(1):13–25. doi: 10.1016/s0896-6273(00)81133-2. [DOI] [PubMed] [Google Scholar]
  8. Choi K. L., Aldrich R. W., Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5092–5095. doi: 10.1073/pnas.88.12.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cullis P. M., Green R. E., Merson-Davies L., Travis N. Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol. 1999 Oct;6(10):717–729. doi: 10.1016/s1074-5521(00)80019-8. [DOI] [PubMed] [Google Scholar]
  10. Eaholtz G., Colvin A., Leonard D., Taylor C., Catterall W. A. Block of brain sodium channels by peptide mimetics of the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. J Gen Physiol. 1999 Feb;113(2):279–294. doi: 10.1085/jgp.113.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Favre I., Moczydlowski E., Schild L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J. 1996 Dec;71(6):3110–3125. doi: 10.1016/S0006-3495(96)79505-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ficker E., Taglialatela M., Wible B. A., Henley C. M., Brown A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994 Nov 11;266(5187):1068–1072. doi: 10.1126/science.7973666. [DOI] [PubMed] [Google Scholar]
  13. French R. J., Wells J. B. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J Gen Physiol. 1977 Dec;70(6):707–724. doi: 10.1085/jgp.70.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garber S. S. Symmetry and asymmetry of permeation through toxin-modified Na+ channels. Biophys J. 1988 Nov;54(5):767–776. doi: 10.1016/S0006-3495(88)83014-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haghighi A. P., Cooper E. A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4 and alpha4beta2 receptors. J Neurosci. 2000 Jan 15;20(2):529–541. doi: 10.1523/JNEUROSCI.20-02-00529.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haghighi A. P., Cooper E. Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci. 1998 Jun 1;18(11):4050–4062. doi: 10.1523/JNEUROSCI.18-11-04050.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heinemann S. H., Terlau H., Stühmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992 Apr 2;356(6368):441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
  18. Hille B. The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol. 1971 Dec;58(6):599–619. doi: 10.1085/jgp.58.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang C. J., Favre I., Moczydlowski E. Permeation of large tetra-alkylammonium cations through mutant and wild-type voltage-gated sodium channels as revealed by relief of block at high voltage. J Gen Physiol. 2000 Apr;115(4):435–454. doi: 10.1085/jgp.115.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Igarashi K., Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 2000 May 19;271(3):559–564. doi: 10.1006/bbrc.2000.2601. [DOI] [PubMed] [Google Scholar]
  21. Lopatin A. N., Makhina E. N., Nichols C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 1994 Nov 24;372(6504):366–369. doi: 10.1038/372366a0. [DOI] [PubMed] [Google Scholar]
  22. Lopatin A. N., Makhina E. N., Nichols C. G. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines. J Gen Physiol. 1995 Nov;106(5):923–955. doi: 10.1085/jgp.106.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lu Z., Ding L. Blockade of a retinal cGMP-gated channel by polyamines. J Gen Physiol. 1999 Jan;113(1):35–43. doi: 10.1085/jgp.113.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lu Z., MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature. 1994 Sep 15;371(6494):243–246. doi: 10.1038/371243a0. [DOI] [PubMed] [Google Scholar]
  25. Nichols C. G., Lopatin A. N. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:171–191. doi: 10.1146/annurev.physiol.59.1.171. [DOI] [PubMed] [Google Scholar]
  26. Nichols C. G., Makhina E. N., Pearson W. L., Sha Q., Lopatin A. N. Inward rectification and implications for cardiac excitability. Circ Res. 1996 Jan;78(1):1–7. doi: 10.1161/01.res.78.1.1. [DOI] [PubMed] [Google Scholar]
  27. O'Leary M. E., Horn R. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. J Gen Physiol. 1994 Sep;104(3):507–522. doi: 10.1085/jgp.104.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Leary M. E., Kallen R. G., Horn R. Evidence for a direct interaction between internal tetra-alkylammonium cations and the inactivation gate of cardiac sodium channels. J Gen Physiol. 1994 Sep;104(3):523–539. doi: 10.1085/jgp.104.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pusch M., Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204–211. doi: 10.1007/BF00582316. [DOI] [PubMed] [Google Scholar]
  30. Pusch M. Open-channel block of Na+ channels by intracellular Mg2+. Eur Biophys J. 1990;18(6):317–326. doi: 10.1007/BF00196922. [DOI] [PubMed] [Google Scholar]
  31. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  32. Scheuer T. Commentary: A revised view of local anesthetic action: what channel state is really stabilized? J Gen Physiol. 1999 Jan;113(1):3–6. doi: 10.1085/jgp.113.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott R. H., Sutton K. G., Dolphin A. C. Interactions of polyamines with neuronal ion channels. Trends Neurosci. 1993 Apr;16(4):153–160. doi: 10.1016/0166-2236(93)90124-5. [DOI] [PubMed] [Google Scholar]
  34. Sine S. M., Steinbach J. H. Agonists block currents through acetylcholine receptor channels. Biophys J. 1984 Aug;46(2):277–283. doi: 10.1016/S0006-3495(84)84022-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sun Y. M., Favre I., Schild L., Moczydlowski E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol. 1997 Dec;110(6):693–715. doi: 10.1085/jgp.110.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taglialatela M., Ficker E., Wible B. A., Brown A. M. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 1995 Nov 15;14(22):5532–5541. doi: 10.1002/j.1460-2075.1995.tb00240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Taylor C. P., Narasimhan L. S. Sodium channels and therapy of central nervous system diseases. Adv Pharmacol. 1997;39:47–98. [PubMed] [Google Scholar]
  39. Townsend C., Hartmann H. A., Horn R. Anomalous effect of permeant ion concentration on peak open probability of cardiac Na+ channels. J Gen Physiol. 1997 Jul;110(1):11–21. doi: 10.1085/jgp.110.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Townsend C., Horn R. Interaction between the pore and a fast gate of the cardiac sodium channel. J Gen Physiol. 1999 Feb;113(2):321–332. doi: 10.1085/jgp.113.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  42. Williams K. Interactions of polyamines with ion channels. Biochem J. 1997 Jul 15;325(Pt 2):289–297. doi: 10.1042/bj3250289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]
  45. Yang J., Jan Y. N., Jan L. Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron. 1995 May;14(5):1047–1054. doi: 10.1016/0896-6273(95)90343-7. [DOI] [PubMed] [Google Scholar]
  46. Yeh J. Z., Narahashi T. Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. J Gen Physiol. 1977 Mar;69(3):293–323. doi: 10.1085/jgp.69.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES