Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1280–1297. doi: 10.1016/S0006-3495(01)76103-6

Multiple binding sites for melatonin on Kv1.3.

Z Varga 1, G Panyi 1, M Péter Jr 1, C Pieri 1, G Csécsei 1, S Damjanovich 1, R Gáspár Jr 1
PMCID: PMC1301322  PMID: 11222291

Abstract

Melatonin is a small amino acid derivative hormone of the pineal gland. Melatonin quickly and reversibly blocked Kv1.3 channels, the predominant voltage-gated potassium channel in human T-lymphocytes, acting from the extracellular side. The block did not show state or voltage dependence and was associated with an increased inactivation rate of the current. A half-blocking concentration of 1.5 mM was obtained from the reduction of the peak current. We explored several models to describe the stoichiometry of melatonin-Kv1.3 interaction considering one or four independent binding sites per channel. The model in which the occupancy of one of four binding sites by melatonin is sufficient to block the channels gives the best fit to the dose-response relationship, although all four binding sites can be occupied by the drug. The dissociation constant for the individual binding sites is 8.11 mM. Parallel application of charybdotoxin and melatonin showed that both compounds can simultaneously bind to the channels, thereby localizing the melatonin binding site out of the pore region. However, binding of tetraethylammonium to its receptor decreases the melatonin affinity, and vice versa. Thus, the occupancy of the two separate receptor sites allosterically modulates each other.

Full Text

The Full Text of this article is available as a PDF (197.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Withka J. M., Rizzi J. P., Singleton D. H., Andrews G. C., Lin W., Boyd J., Hanson D. C., Simon M., Dethlefs B. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron. 1995 Nov;15(5):1169–1181. doi: 10.1016/0896-6273(95)90104-3. [DOI] [PubMed] [Google Scholar]
  2. Cahalan M. D., Chandy K. G., DeCoursey T. E., Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol. 1985 Jan;358:197–237. doi: 10.1113/jphysiol.1985.sp015548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cahalan M. D., Lewis R. S. Functional roles of ion channels in lymphocytes. Semin Immunol. 1990 Mar;2(2):107–117. [PubMed] [Google Scholar]
  4. Costa E. J., Lopes R. H., Lamy-Freund M. T. Permeability of pure lipid bilayers to melatonin. J Pineal Res. 1995 Oct;19(3):123–126. doi: 10.1111/j.1600-079x.1995.tb00180.x. [DOI] [PubMed] [Google Scholar]
  5. DeCoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature. 1984 Feb 2;307(5950):465–468. doi: 10.1038/307465a0. [DOI] [PubMed] [Google Scholar]
  6. DeCoursey T. E. State-dependent inactivation of K+ currents in rat type II alveolar epithelial cells. J Gen Physiol. 1990 Apr;95(4):617–646. doi: 10.1085/jgp.95.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demo S. D., Yellen G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 1991 Nov;7(5):743–753. doi: 10.1016/0896-6273(91)90277-7. [DOI] [PubMed] [Google Scholar]
  8. Deutsch C., Chen L. Q. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10036–10040. doi: 10.1073/pnas.90.21.10036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deutsch C., Krause D., Lee S. C. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol. 1986 Mar;372:405–423. doi: 10.1113/jphysiol.1986.sp016016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deutsch C., Price M., Lee S., King V. F., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K+ channel. J Biol Chem. 1991 Feb 25;266(6):3668–3674. [PubMed] [Google Scholar]
  11. Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  13. Grissmer S., Cahalan M. TEA prevents inactivation while blocking open K+ channels in human T lymphocytes. Biophys J. 1989 Jan;55(1):203–206. doi: 10.1016/S0006-3495(89)82793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heginbotham L., MacKinnon R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron. 1992 Mar;8(3):483–491. doi: 10.1016/0896-6273(92)90276-j. [DOI] [PubMed] [Google Scholar]
  15. Jiang Z. G., Nelson C. S., Allen C. N. Melatonin activates an outward current and inhibits Ih in rat suprachiasmatic nucleus neurons. Brain Res. 1995 Jul 31;687(1-2):125–132. doi: 10.1016/0006-8993(95)00478-9. [DOI] [PubMed] [Google Scholar]
  16. Kavanaugh M. P., Varnum M. D., Osborne P. B., Christie M. J., Busch A. E., Adelman J. P., North R. A. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J Biol Chem. 1991 Apr 25;266(12):7583–7587. [PubMed] [Google Scholar]
  17. Kirsch G. E., Drewe J. A. Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J Gen Physiol. 1993 Nov;102(5):797–816. doi: 10.1085/jgp.102.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee S. C., Levy D. I., Deutsch C. Diverse K+ channels in primary human T lymphocytes. J Gen Physiol. 1992 May;99(5):771–793. doi: 10.1085/jgp.99.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levy D. I., Deutsch C. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys J. 1996 Feb;70(2):798–805. doi: 10.1016/S0006-3495(96)79619-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liebmann P. M., Wölfler A., Felsner P., Hofer D., Schauenstein K. Melatonin and the immune system. Int Arch Allergy Immunol. 1997 Mar;112(3):203–211. doi: 10.1159/000237455. [DOI] [PubMed] [Google Scholar]
  21. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  22. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  23. MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacKinnon R., Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 1990 Oct 12;250(4978):276–279. doi: 10.1126/science.2218530. [DOI] [PubMed] [Google Scholar]
  25. Malayev A. A., Nelson D. J., Philipson L. H. Mechanism of clofilium block of the human Kv1.5 delayed rectifier potassium channel. Mol Pharmacol. 1995 Jan;47(1):198–205. [PubMed] [Google Scholar]
  26. Marom S., Levitan I. B. State-dependent inactivation of the Kv3 potassium channel. Biophys J. 1994 Aug;67(2):579–589. doi: 10.1016/S0006-3495(94)80517-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matteson D. R., Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature. 1984 Feb 2;307(5950):468–471. doi: 10.1038/307468a0. [DOI] [PubMed] [Google Scholar]
  28. Miller C. Competition for block of a Ca2(+)-activated K+ channel by charybdotoxin and tetraethylammonium. Neuron. 1988 Dec;1(10):1003–1006. doi: 10.1016/0896-6273(88)90157-2. [DOI] [PubMed] [Google Scholar]
  29. Motulsky H. J., Ransnas L. A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987 Nov;1(5):365–374. [PubMed] [Google Scholar]
  30. Panyi G., Sheng Z., Deutsch C. C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J. 1995 Sep;69(3):896–903. doi: 10.1016/S0006-3495(95)79963-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Persengiev S. P., Kyurkchiev S. Selective effect of melatonin on the proliferation of lymphoid cells. Int J Biochem. 1993 Mar;25(3):441–444. doi: 10.1016/0020-711x(93)90637-t. [DOI] [PubMed] [Google Scholar]
  32. Pieri C., Recchioni R., Moroni F., Marcheselli F., Marra M., Marinoni S., Di Primio R. Melatonin regulates the respiratory burst of human neutrophils and their depolarization. J Pineal Res. 1998 Jan;24(1):43–49. doi: 10.1111/j.1600-079x.1998.tb00364.x. [DOI] [PubMed] [Google Scholar]
  33. Pioli C., Caroleo M. C., Nistico G, Doria G. Melatonin increases antigen presentation and amplifies specific and non specific signals for T-cell proliferation. Int J Immunopharmacol. 1993 May;15(4):463–468. doi: 10.1016/0192-0561(93)90060-c. [DOI] [PubMed] [Google Scholar]
  34. Preslock J. P. The pineal gland: basic implications and clinical correlations. Endocr Rev. 1984 Spring;5(2):282–308. doi: 10.1210/edrv-5-2-282. [DOI] [PubMed] [Google Scholar]
  35. Péter M., Jr, Varga Z., Panyi G., Bene L., Damjanovich S., Pieri C., Possani L. D., Gáspár R., Jr Pandinus imperator scorpion venom blocks voltage-gated K+ channels in human lymphocytes. Biochem Biophys Res Commun. 1998 Jan 26;242(3):621–625. doi: 10.1006/bbrc.1997.8018. [DOI] [PubMed] [Google Scholar]
  36. Rasmusson R. L., Zhang Y., Campbell D. L., Comer M. B., Castellino R. C., Liu S., Strauss H. C. Bi-stable block by 4-aminopyridine of a transient K+ channel (Kv1.4) cloned from ferret ventricle and expressed in Xenopus oocytes. J Physiol. 1995 May 15;485(Pt 1):59–71. doi: 10.1113/jphysiol.1995.sp020712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Snyders D. J., Chaudhary A. High affinity open channel block by dofetilide of HERG expressed in a human cell line. Mol Pharmacol. 1996 Jun;49(6):949–955. [PubMed] [Google Scholar]
  38. Snyders J., Knoth K. M., Roberds S. L., Tamkun M. M. Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol. 1992 Feb;41(2):322–330. [PubMed] [Google Scholar]
  39. Spruce A. E., Standen N. B., Stanfield P. R. The action of external tetraethylammonium ions on unitary delayed rectifier potassium channels of frog skeletal muscle. J Physiol. 1987 Dec;393:467–478. doi: 10.1113/jphysiol.1987.sp016833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swartz K. J., MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron. 1997 Apr;18(4):665–673. doi: 10.1016/s0896-6273(00)80306-2. [DOI] [PubMed] [Google Scholar]
  41. Swartz K. J., MacKinnon R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron. 1997 Apr;18(4):675–682. doi: 10.1016/s0896-6273(00)80307-4. [DOI] [PubMed] [Google Scholar]
  42. Vanecek J., Klein D. C. Sodium-dependent effects of melatonin on membrane potential of neonatal rat pituitary cells. Endocrinology. 1992 Aug;131(2):939–946. doi: 10.1210/endo.131.2.1322288. [DOI] [PubMed] [Google Scholar]
  43. Vijayalaxmi, Reiter R. J., Leal B. Z., Meltz M. L. Effect of melatonin on mitotic and proliferation indices, and sister chromatid exchange in human blood lymphocytes. Mutat Res. 1996 Apr 13;351(2):187–192. doi: 10.1016/0027-5107(95)00238-3. [DOI] [PubMed] [Google Scholar]
  44. Yellen G., Jurman M. E., Abramson T., MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 1991 Feb 22;251(4996):939–942. doi: 10.1126/science.2000494. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES