Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1329–1342. doi: 10.1016/S0006-3495(01)76106-1

Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines.

R N Lewis 1, I Winter 1, M Kriechbaum 1, K Lohner 1, R N McElhaney 1
PMCID: PMC1301325  PMID: 11222294

Abstract

Differential scanning calorimetry, x-ray diffraction, and infrared and (31)P-nuclear magnetic resonance ((31)P-NMR) spectroscopy were used to examine the thermotropic phase behavior and organization of cationic model membranes composed of the P-O-ethyl esters of a homologous series of n-saturated 1,2-diacyl phosphatidylcholines (Et-PCs). Differential scanning calorimetry studies indicate that on heating, these lipids exhibit single highly energetic and cooperative endothermic transitions whose temperatures and enthalpies are higher than those of the corresponding phosphatidylcholines (PCs). Upon cooling, these Et-PCs exhibit two exothermic transitions at temperatures slightly below the single endotherm observed upon heating. These cooling exotherms have both been assigned to transitions between the liquid-crystalline and gel phases of these lipids by x-ray diffraction. The x-ray diffraction data also show that unlike the parent PCs, the chain-melting phase transition of these Et-PCs involves a direct transformation of a chain-interdigitated gel phase to the lamellar liquid-crystalline phase for the homologous series of n > or = 14. Our (31)P-NMR spectroscopic studies indicate that the rates of phosphate headgroup reorientation in both gel and liquid-crystalline phases of these lipids are comparable to those of the corresponding PC bilayers. However, the shape of the (31)P-NMR spectra observed in the interdigitated gel phase indicates that phosphate headgroup reorientation is subject to constraints that are not encountered in the non-interdigitated gel phases of parent PCs. The infrared spectroscopic data indicate that the Et-PCs adopt a very compact form of hydrocarbon chain packing in the interdigitated gel phase and that the polar/apolar interfacial regions of these bilayers are less hydrated than those of corresponding PC bilayers in both the gel and liquid-crystalline phases. Our results indicate that esterification of PC phosphate headgroups results in many alterations of bilayer physical properties aside from the endowment of a positively charged surface. This fact should be considered in assessing the interactions of these compounds with naturally occurring lipids and with other biological materials.

Full Text

The Full Text of this article is available as a PDF (193.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber K., Mala R. R., Lambert M. P., Qiu R., MacDonald R. C., Klein W. L. Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci Lett. 1996 Mar 22;207(1):17–20. doi: 10.1016/0304-3940(96)12497-6. [DOI] [PubMed] [Google Scholar]
  2. Bennett C. F., Chiang M. Y., Chan H., Shoemaker J. E., Mirabelli C. K. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol. 1992 Jun;41(6):1023–1033. [PubMed] [Google Scholar]
  3. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  4. Bouwstra J. A., Gooris G. S., Bras W., Talsma H. Small angle X-ray scattering: possibilities and limitations in characterization of vesicles. Chem Phys Lipids. 1993 Sep;64(1-3):83–98. doi: 10.1016/0009-3084(93)90059-c. [DOI] [PubMed] [Google Scholar]
  5. Braganza L. F., Worcester D. L. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986 May 6;25(9):2591–2596. doi: 10.1021/bi00357a047. [DOI] [PubMed] [Google Scholar]
  6. Debs R. J., Freedman L. P., Edmunds S., Gaensler K. L., Düzgünes N., Yamamoto K. R. Regulation of gene expression in vivo by liposome-mediated delivery of a purified transcription factor. J Biol Chem. 1990 Jun 25;265(18):10189–10192. [PubMed] [Google Scholar]
  7. Furuike S., Levadny V. G., Li S. J., Yamazaki M. Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane. Biophys J. 1999 Oct;77(4):2015–2023. doi: 10.1016/S0006-3495(99)77042-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman C. M., Aikawa M., Fox B., Fox E., Lapuz C., Michaud B., Nguyen H., Roche E., Sawa T., Wiener-Kronish J. P. Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Ther. 1997 Sep;4(9):983–992. doi: 10.1038/sj.gt.3300473. [DOI] [PubMed] [Google Scholar]
  9. Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 1995 Dec;13(12):527–537. doi: 10.1016/S0167-7799(00)89017-4. [DOI] [PubMed] [Google Scholar]
  10. Hirsh D. J., Lazaro N., Wright L. R., Boggs J. M., McIntosh T. J., Schaefer J., Blazyk J. A new monofluorinated phosphatidylcholine forms interdigitated bilayers. Biophys J. 1998 Oct;75(4):1858–1868. doi: 10.1016/S0006-3495(98)77626-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang C., McIntosh T. J. Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines. Biophys J. 1997 Jun;72(6):2702–2709. doi: 10.1016/S0006-3495(97)78913-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang L., Farhood H., Serbina N., Teepe A. G., Barsoum J. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells. Biochem Biophys Res Commun. 1995 Dec 26;217(3):761–768. doi: 10.1006/bbrc.1995.2838. [DOI] [PubMed] [Google Scholar]
  13. Hui S. W., Mason J. T., Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1984 Nov 6;23(23):5570–5577. doi: 10.1021/bi00318a029. [DOI] [PubMed] [Google Scholar]
  14. Kim J. T., Mattai J., Shipley G. G. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry. 1987 Oct 20;26(21):6592–6598. doi: 10.1021/bi00395a005. [DOI] [PubMed] [Google Scholar]
  15. Koltover I., Salditt T., Safinya C. R. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys J. 1999 Aug;77(2):915–924. doi: 10.1016/S0006-3495(99)76942-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koynova R. D., Tenchov B. G., Kuttenreich H., Hinz H. J. Structure and phase behavior of a charged glycolipid (1,2-O-dialkyl-3-O-beta-D-glucuronosyl-sn-glycerol). Biochemistry. 1993 Nov 23;32(46):12437–12445. doi: 10.1021/bi00097a023. [DOI] [PubMed] [Google Scholar]
  17. Laggner P., Lohner K., Degovics G., Müller K., Schuster A. Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem Phys Lipids. 1987 Jun;44(1):31–60. doi: 10.1016/0009-3084(87)90004-1. [DOI] [PubMed] [Google Scholar]
  18. Laggner P. X-ray diffraction on biomembranes with emphasis on lipid moiety. Subcell Biochem. 1994;23:451–491. doi: 10.1007/978-1-4615-1863-1_11. [DOI] [PubMed] [Google Scholar]
  19. Lewis R. N., McElhaney R. N., Osterberg F., Gruner S. M. Enigmatic thermotropic phase behavior of highly asymmetric mixed-chain phosphatidylcholines that form mixed-interdigitated gel phases. Biophys J. 1994 Jan;66(1):207–216. doi: 10.1016/S0006-3495(94)80764-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis R. N., McElhaney R. N., Pohle W., Mantsch H. H. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J. 1994 Dec;67(6):2367–2375. doi: 10.1016/S0006-3495(94)80723-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis R. N., McElhaney R. N. Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J. 2000 Sep;79(3):1455–1464. doi: 10.1016/S0006-3495(00)76397-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewis R. N., Pohle W., McElhaney R. N. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Biophys J. 1996 Jun;70(6):2736–2746. doi: 10.1016/S0006-3495(96)79843-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis R. N., Prenner E. J., Kondejewski L. H., Flach C. R., Mendelsohn R., Hodges R. S., McElhaney R. N. Fourier transform infrared spectroscopic studies of the interaction of the antimicrobial peptide gramicidin S with lipid micelles and with lipid monolayer and bilayer membranes. Biochemistry. 1999 Nov 16;38(46):15193–15203. doi: 10.1021/bi9912342. [DOI] [PubMed] [Google Scholar]
  24. Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
  25. MacDonald R. C., Ashley G. W., Shida M. M., Rakhmanova V. A., Tarahovsky Y. S., Pantazatos D. P., Kennedy M. T., Pozharski E. V., Baker K. A., Jones R. D. Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J. 1999 Nov;77(5):2612–2629. doi: 10.1016/S0006-3495(99)77095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacDonald R. C., Rakhmanova V. A., Choi K. L., Rosenzweig H. S., Lahiri M. K. O-ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci. 1999 Sep;88(9):896–904. doi: 10.1021/js990006q. [DOI] [PubMed] [Google Scholar]
  27. Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
  28. Mason J. T., Cunningham R. E., O'Leary T. J. Lamellar-phase polymorphism in interdigitated bilayer assemblies. Biochim Biophys Acta. 1995 May 24;1236(1):65–72. doi: 10.1016/0005-2736(95)00036-3. [DOI] [PubMed] [Google Scholar]
  29. Matsumura J. S., Kim R., Shively V. P., MacDonald R. C., Pearce W. H. Characterization of vascular gene transfer using a novel cationic lipid. J Surg Res. 1999 Aug;85(2):339–345. doi: 10.1006/jsre.1999.5678. [DOI] [PubMed] [Google Scholar]
  30. Maulik P. R., Ruocco M. J., Shipley G. G. Hydrocarbon chain packing modes in lipids: effect of altered sub-cell dimensions and chain rotation. Chem Phys Lipids. 1990 Dec;56(2-3):123–133. doi: 10.1016/0009-3084(90)90095-9. [DOI] [PubMed] [Google Scholar]
  31. McDonald R. J., Liggitt H. D., Roche L., Nguyen H. T., Pearlman R., Raabe O. G., Bussey L. B., Gorman C. M. Aerosol delivery of lipid:DNA complexes to lungs of rhesus monkeys. Pharm Res. 1998 May;15(5):671–679. doi: 10.1023/a:1011902532163. [DOI] [PubMed] [Google Scholar]
  32. Morgan R. A., Anderson W. F. Human gene therapy. Annu Rev Biochem. 1993;62:191–217. doi: 10.1146/annurev.bi.62.070193.001203. [DOI] [PubMed] [Google Scholar]
  33. Nambi P., Rowe E. S., McIntosh T. J. Studies of the ethanol-induced interdigitated gel phase in phosphatidylcholines using the fluorophore 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1988 Dec 27;27(26):9175–9182. doi: 10.1021/bi00426a015. [DOI] [PubMed] [Google Scholar]
  34. Pantazatos D. P., MacDonald R. C. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J Membr Biol. 1999 Jul 1;170(1):27–38. doi: 10.1007/s002329900535. [DOI] [PubMed] [Google Scholar]
  35. Peng X., Jonas J. High-pressure 31P NMR study of dipalmitoylphosphatidylcholine bilayers. Biochemistry. 1992 Jul 21;31(28):6383–6390. doi: 10.1021/bi00143a004. [DOI] [PubMed] [Google Scholar]
  36. Ranck J. L., Keira T., Luzzati V. A novel packing of the hydrocarbon chains in lipids. The low temperature phases of dipalmitoyl phosphatidyl-glycerol. Biochim Biophys Acta. 1977 Sep 28;488(3):432–441. doi: 10.1016/0005-2760(77)90201-6. [DOI] [PubMed] [Google Scholar]
  37. Ruocco M. J., Siminovitch D. J., Griffin R. G. Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines. Biochemistry. 1985 May 7;24(10):2406–2411. doi: 10.1021/bi00331a003. [DOI] [PubMed] [Google Scholar]
  38. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  39. Serrallach E. N., Dijkman R., de Haas G. H., Shipley G. G. Structure and thermotropic properties of 1,3-dipalmitoyl-glycero-2-phosphocholine. J Mol Biol. 1983 Oct 15;170(1):155–174. doi: 10.1016/s0022-2836(83)80231-9. [DOI] [PubMed] [Google Scholar]
  40. Simon S. A., McIntosh T. J. Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta. 1984 Jun 13;773(1):169–172. doi: 10.1016/0005-2736(84)90562-5. [DOI] [PubMed] [Google Scholar]
  41. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  42. Wiener M. C., Suter R. M., Nagle J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989 Feb;55(2):315–325. doi: 10.1016/S0006-3495(89)82807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilkinson D. A., Tirrell D. A., Turek A. B., McIntosh T. J. Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. Biochim Biophys Acta. 1987 Dec 11;905(2):447–453. doi: 10.1016/0005-2736(87)90474-3. [DOI] [PubMed] [Google Scholar]
  44. Xu H., Stephenson F. A., Huang C. H. Binary mixtures of asymmetric phosphatidylcholines with one acyl chain twice as long as the other. Biochemistry. 1987 Aug 25;26(17):5448–5453. doi: 10.1021/bi00391a035. [DOI] [PubMed] [Google Scholar]
  45. Zhou F., Huang L. Liposome-mediated cytoplasmic delivery of proteins: an effective means of accessing the MHC class I-restricted antigen presentation pathway. Immunomethods. 1994 Jun;4(3):229–235. doi: 10.1006/immu.1994.1025. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES