Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1343–1353. doi: 10.1016/S0006-3495(01)76107-3

Differential interaction of equinatoxin II with model membranes in response to lipid composition.

J M Caaveiro 1, I Echabe 1, I Gutiérrez-Aguirre 1, J L Nieva 1, J L Arrondo 1, J M González-Mañas 1
PMCID: PMC1301326  PMID: 11222295

Abstract

Equinatoxin II is a 179-amino-acid pore-forming protein isolated from the venom of the sea anemone Actinia equina. Large unilamellar vesicles and lipid monolayers of different lipid compositions have been used to study its interaction with membranes. The critical pressure for insertion is the same in monolayers made of phosphatidylcholine or sphingomyelin (approximately 26 mN m(-1)) and explains why the permeabilization of large unilamellar vesicles by equinatoxin II with these lipid compositions is null or moderate. In phosphatidylcholine-sphingomyelin (1:1) monolayers, the critical pressure is higher (approximately 33 mN m(-1)), thus permitting the insertion of equinatoxin II in large unilamellar vesicles, a process that is accompanied by major conformational changes. In the presence of vesicles made of phosphatidylcholine, a fraction of the protein molecules remains associated with the membranes. This interaction is fully reversible, does not involve major conformational changes, and is governed by the high affinity for membrane interfaces of the protein region comprising amino acids 101-120. We conclude that although the presence of sphingomyelin within the membrane creates conditions for irreversible insertion and pore formation, this lipid is not essential for the initial partitioning event, and its role as a specific receptor for the toxin is not so clear-cut.

Full Text

The Full Text of this article is available as a PDF (109.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderluh G., Barlic A., Podlesek Z., Macek P., Pungercar J., Gubensek F., Zecchini M. L., Serra M. D., Menestrina G. Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone: topology in lipid membranes. Eur J Biochem. 1999 Jul;263(1):128–136. doi: 10.1046/j.1432-1327.1999.00477.x. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Arrondo J. L., Young N. M., Mantsch H. H. The solution structure of concanavalin A probed by FT-IR spectroscopy. Biochim Biophys Acta. 1988 Feb 10;952(3):261–268. doi: 10.1016/0167-4838(88)90125-2. [DOI] [PubMed] [Google Scholar]
  4. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  5. Basáez G., Nieva J. L., Goñi F. M., Alonso A. Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry. 1996 Dec 3;35(48):15183–15187. doi: 10.1021/bi9616561. [DOI] [PubMed] [Google Scholar]
  6. Belmonte G., Menestrina G., Pederzolli C., Krizaj I., Gubensek F., Turk T., Macek P. Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochim Biophys Acta. 1994 Jun 22;1192(2):197–204. doi: 10.1016/0005-2736(94)90119-8. [DOI] [PubMed] [Google Scholar]
  7. Belmonte G., Pederzolli C., Macek P., Menestrina G. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J Membr Biol. 1993 Jan;131(1):11–22. doi: 10.1007/BF02258530. [DOI] [PubMed] [Google Scholar]
  8. Bernheimer A. W., Avigad L. S. Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):467–471. doi: 10.1073/pnas.73.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brockman H. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol. 1999 Aug;9(4):438–443. doi: 10.1016/S0959-440X(99)80061-X. [DOI] [PubMed] [Google Scholar]
  10. Bunc M., Drevensek G., Budihna M., Suput D. Effects of equinatoxin II from Actinia equina (L.) on isolated rat heart: the role of direct cardiotoxic effects in equinatoxin II lethality. Toxicon. 1999 Jan;37(1):109–123. doi: 10.1016/s0041-0101(98)00168-8. [DOI] [PubMed] [Google Scholar]
  11. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  12. Castresana J., Muga A., Arrondo J. L. The structure of proteins in aqueous solutions: an assessment of triose phosphate isomerase structure by Fourier-transform infrared spectroscopy. Biochem Biophys Res Commun. 1988 Apr 15;152(1):69–75. doi: 10.1016/s0006-291x(88)80681-8. [DOI] [PubMed] [Google Scholar]
  13. Chehín R., Iloro I., Marcos M. J., Villar E., Shnyrov V. L., Arrondo J. L. Thermal and pH-induced conformational changes of a beta-sheet protein monitored by infrared spectroscopy. Biochemistry. 1999 Feb 2;38(5):1525–1530. doi: 10.1021/bi981567j. [DOI] [PubMed] [Google Scholar]
  14. Doyle J. W., Kem W. R., Vilallonga F. A. Interfacial activity of an ion channel-generating protein cytolysin from the sea anemone Stichodactyla helianthus. Toxicon. 1989;27(4):465–471. doi: 10.1016/0041-0101(89)90209-2. [DOI] [PubMed] [Google Scholar]
  15. Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry. 1985 Jun 18;24(13):3099–3106. doi: 10.1021/bi00334a005. [DOI] [PubMed] [Google Scholar]
  16. Fabian H., Naumann D., Misselwitz R., Ristau O., Gerlach D., Welfle H. Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study. Biochemistry. 1992 Jul 21;31(28):6532–6538. doi: 10.1021/bi00143a024. [DOI] [PubMed] [Google Scholar]
  17. Giraldi T., Ferlan I., Romeo D. Antitumor activity of equinatoxin. Chem Biol Interact. 1976 Jun;13(3-4):199–203. doi: 10.1016/0009-2797(76)90073-9. [DOI] [PubMed] [Google Scholar]
  18. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  19. Macek P., Belmonte G., Pederzolli C., Menestrina G. Mechanism of action of equinatoxin II, a cytolysin from the sea anemone Actinia equina L. belonging to the family of actinoporins. Toxicology. 1994 Feb 28;87(1-3):205–227. doi: 10.1016/0300-483x(94)90252-6. [DOI] [PubMed] [Google Scholar]
  20. Macek P., Lebez D. Isolation and characterization of three lethal and hemolytic toxins from the sea anemone Actinia equina L. Toxicon. 1988;26(5):441–451. doi: 10.1016/0041-0101(88)90183-3. [DOI] [PubMed] [Google Scholar]
  21. Macek P., Lebez D. Kinetics of hemolysis induced by equinatoxin, a cytolytic toxin from the sea anemone Actinia equina. Effect of some ions and pH. Toxicon. 1981;19(2):233–240. doi: 10.1016/0041-0101(81)90026-x. [DOI] [PubMed] [Google Scholar]
  22. Macek P., Zecchini M., Pederzolli C., Dalla Serra M., Menestrina G. Intrinsic tryptophan fluorescence of equinatoxin II, a pore-forming polypeptide from the sea anemone Actinia equina L, monitors its interaction with lipid membranes. Eur J Biochem. 1995 Nov 15;234(1):329–335. doi: 10.1111/j.1432-1033.1995.329_c.x. [DOI] [PubMed] [Google Scholar]
  23. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  24. Menestrina G., Cabiaux V., Tejuca M. Secondary structure of sea anemone cytolysins in soluble and membrane bound form by infrared spectroscopy. Biochem Biophys Res Commun. 1999 Jan 8;254(1):174–180. doi: 10.1006/bbrc.1998.9898. [DOI] [PubMed] [Google Scholar]
  25. Michaels D. W. Membrane damage by a toxin from the sea anemone Stoichactis helianthus. I. Formation of transmembrane channels in lipid bilayers. Biochim Biophys Acta. 1979 Jul 19;555(1):67–78. doi: 10.1016/0005-2736(79)90072-5. [DOI] [PubMed] [Google Scholar]
  26. Naumann D., Schultz C., Görne-Tschelnokow U., Hucho F. Secondary structure and temperature behavior of the acetylcholine receptor by Fourier transform infrared spectroscopy. Biochemistry. 1993 Mar 30;32(12):3162–3168. doi: 10.1021/bi00063a031. [DOI] [PubMed] [Google Scholar]
  27. Nir S., Nieva J. L. Interactions of peptides with liposomes: pore formation and fusion. Prog Lipid Res. 2000 Mar;39(2):181–206. doi: 10.1016/s0163-7827(00)00004-7. [DOI] [PubMed] [Google Scholar]
  28. Norton R. S., Macek P., Reid G. E., Simpson R. J. Relationship between the cytolysins tenebrosin-C from Actinia tenebrosa and equinatoxin II from Actinia equina. Toxicon. 1992 Jan;30(1):13–23. doi: 10.1016/0041-0101(92)90497-s. [DOI] [PubMed] [Google Scholar]
  29. Pereira F. B., Goñi F. M., Muga A., Nieva J. L. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. Biophys J. 1997 Oct;73(4):1977–1986. doi: 10.1016/S0006-3495(97)78228-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poklar N., Fritz J., Macek P., Vesnaver G., Chalikian T. V. Interaction of the pore-forming protein equinatoxin II with model lipid membranes: A calorimetric and spectroscopic study. Biochemistry. 1999 Nov 9;38(45):14999–15008. doi: 10.1021/bi9916022. [DOI] [PubMed] [Google Scholar]
  31. Poklar N., Lah J., Salobir M., Macek P., Vesnaver G. pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence. Biochemistry. 1997 Nov 25;36(47):14345–14352. doi: 10.1021/bi971719v. [DOI] [PubMed] [Google Scholar]
  32. Raja S. M., Rawat S. S., Chattopadhyay A., Lala A. K. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J. 1999 Mar;76(3):1469–1479. doi: 10.1016/S0006-3495(99)77307-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rossjohn J., Feil S. C., McKinstry W. J., Tweten R. K., Parker M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 1997 May 30;89(5):685–692. doi: 10.1016/s0092-8674(00)80251-2. [DOI] [PubMed] [Google Scholar]
  34. Ruiz-Argüello M. B., Goñi F. M., Pereira F. B., Nieva J. L. Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol. 1998 Mar;72(3):1775–1781. doi: 10.1128/jvi.72.3.1775-1781.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sekino-Suzuki N., Nakamura M., Mitsui K. I., Ohno-Iwashita Y. Contribution of individual tryptophan residues to the structure and activity of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur J Biochem. 1996 Nov 1;241(3):941–947. doi: 10.1111/j.1432-1033.1996.00941.x. [DOI] [PubMed] [Google Scholar]
  36. Shin M. L., Michaels D. W., Mayer M. M. Membrane damage by a toxin from the sea anemone Stoichactis helianthus. II. Effect of membrane lipid composition in a liposome system. Biochim Biophys Acta. 1979 Jul 19;555(1):79–88. doi: 10.1016/0005-2736(79)90073-7. [DOI] [PubMed] [Google Scholar]
  37. Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
  38. Tejuca M., Serra M. D., Ferreras M., Lanio M. E., Menestrina G. Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry. 1996 Nov 26;35(47):14947–14957. doi: 10.1021/bi960787z. [DOI] [PubMed] [Google Scholar]
  39. Teng C. M., Lee L. G., Lee C. Y., Ferlan I. Platelet aggregation induced by equinatoxin. Thromb Res. 1988 Dec 1;52(5):401–411. doi: 10.1016/0049-3848(88)90024-2. [DOI] [PubMed] [Google Scholar]
  40. Vécsey-Semjén B., Lesieur C., Möllby R., van der Goot F. G. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem. 1997 Feb 28;272(9):5709–5717. doi: 10.1074/jbc.272.9.5709. [DOI] [PubMed] [Google Scholar]
  41. White S. H., Wimley W. C., Ladokhin A. S., Hristova K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 1998;295:62–87. doi: 10.1016/s0076-6879(98)95035-2. [DOI] [PubMed] [Google Scholar]
  42. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  43. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
  44. Zorec R., Tester M., Macek P., Mason W. T. Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J Membr Biol. 1990 Dec;118(3):243–249. doi: 10.1007/BF01868608. [DOI] [PubMed] [Google Scholar]
  45. de los Rios V., Mancheño J. M., Lanio M. E., Oñaderra M., Gavilanes J. G. Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. Eur J Biochem. 1998 Mar 1;252(2):284–289. doi: 10.1046/j.1432-1327.1998.2520284.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES