Abstract
Carbohydrate-carbohydrate interactions are rarely considered in biologically relevant situations such as cell recognition and adhesion. One Ca(2+)-mediated homotypic interaction between two Lewis(x) determinants (Le(x)) has been proposed to drive cell adhesion in murine embryogenesis. Here, we confirm the existence of this specific interaction by reporting the first direct quantitative measurements in an environment akin to that provided by membranes. The adhesion between giant vesicles functionalized with Le(x) was obtained by micropipette aspiration and contact angle measurements. This interaction is below the thermal energy, and cell-cell adhesion will require a large number of molecules, as illustrated by the Le(x) concentration peak observed at the cell membranes during the morula stage of the embryo. This adhesion is ultralow and therefore difficult to measure. Such small interactions explain why the concept of specific interactions between carbohydrates is often neglected.
Full Text
The Full Text of this article is available as a PDF (114.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell G. I., Dembo M., Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J. 1984 Jun;45(6):1051–1064. doi: 10.1016/S0006-3495(84)84252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boubelík M., Floryk D., Bohata J., Dráberová L., Macák J., Smíd F., Dráber P. Lex glycosphingolipids-mediated cell aggregation. Glycobiology. 1998 Feb;8(2):139–146. doi: 10.1093/glycob/8.2.139. [DOI] [PubMed] [Google Scholar]
- Bugg C. E. Calcium binding to carbohydrates. Crystal structure of a hydrated calcium bromide complex of lactose. J Am Chem Soc. 1973 Feb 7;95(3):908–913. doi: 10.1021/ja00784a046. [DOI] [PubMed] [Google Scholar]
- Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem. 1989 Jun 5;264(16):9476–9484. [PubMed] [Google Scholar]
- Evans E. A. Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophys J. 1985 Jul;48(1):175–183. doi: 10.1016/S0006-3495(85)83770-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. A. Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J. 1985 Jul;48(1):185–192. doi: 10.1016/S0006-3495(85)83771-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenderson B. A., Holmes E. H., Fukushi Y., Hakomori S. Coordinate expression of X and Y haptens during murine embryogenesis. Dev Biol. 1986 Mar;114(1):12–21. doi: 10.1016/0012-1606(86)90379-9. [DOI] [PubMed] [Google Scholar]
- Geyer A, Gege C, Schmidt RR. Calcium-Dependent Carbohydrate-Carbohydrate Recognition between Lewis(X) Blood Group Antigens This research was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Angew Chem Int Ed Engl. 2000 Sep 15;39(18):3245–3249. doi: 10.1002/1521-3773(20000915)39:18<3245::aid-anie3245>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Henry B., Desvaux H., Pristchepa M., Berthault P., Zhang Y. M., Mallet J. M., Esnault J., Sinaÿ P. NMR study of a Lewis(X) pentasaccharide derivative: solution structure and interaction with cations. Carbohydr Res. 1999 Jan 31;315(1-2):48–62. doi: 10.1016/s0008-6215(98)00301-2. [DOI] [PubMed] [Google Scholar]
- Kojima N., Fenderson B. A., Stroud M. R., Goldberg R. I., Habermann R., Toyokuni T., Hakomori S. Further studies on cell adhesion based on Le(x)-Le(x) interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le(x) expression. Glycoconj J. 1994 Jun;11(3):238–248. doi: 10.1007/BF00731224. [DOI] [PubMed] [Google Scholar]
- Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcelja S. Electrostatics of membrane adhesion. Biophys J. 1992 May;61(5):1117–1121. doi: 10.1016/S0006-3495(92)81921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry. 1988 Oct 18;27(21):8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
- Needham D. Measurement of interbilayer adhesion energies. Methods Enzymol. 1993;220:111–129. doi: 10.1016/0076-6879(93)20078-h. [DOI] [PubMed] [Google Scholar]
- Noppl-Simson D. A., Needham D. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions. Biophys J. 1996 Mar;70(3):1391–1401. doi: 10.1016/S0006-3495(96)79697-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Z. W., Calvert T. L., Leckband D. Molecular forces between membranes displaying neutral glycosphingolipids: evidence for carbohydrate attraction. Biochemistry. 1998 Feb 10;37(6):1540–1550. doi: 10.1021/bi971010o. [DOI] [PubMed] [Google Scholar]
