Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1359–1371. doi: 10.1016/S0006-3495(01)76109-7

Amyloid-beta peptide assembly: a critical step in fibrillogenesis and membrane disruption.

C M Yip 1, J McLaurin 1
PMCID: PMC1301328  PMID: 11222297

Abstract

Identifying the mechanisms responsible for the assembly of proteins into higher-order structures is fundamental to structural biology and understanding specific disease pathways. The amyloid-beta (Abeta) peptide is illustrative in this regard as fibrillar deposits of Abeta are characteristic of Alzheimer's disease. Because Abeta includes portions of the extracellular and transmembrane domains of the amyloid precursor protein, it is crucial to understand how this peptide interacts with cell membranes and specifically the role of membrane structure and composition on Abeta assembly and cytotoxicity. We describe the results of a combined circular dichroism spectroscopy, electron microscopy, and in situ tapping mode atomic force microscopy (TMAFM) study of the interaction of soluble monomeric Abeta with planar bilayers of total brain lipid extract. In situ extended-duration TMAFM provided evidence of membrane disruption via fibril growth of initially monomeric Abeta1-40 peptide within the total brain lipid bilayers. In contrast, the truncated Abeta1-28 peptide, which lacks the anchoring transmembrane domain found in Abeta1-40, self-associates within the lipid headgroups but does not undergo fibrillogenesis. These observations suggest that the fibrillogenic properties of Abeta peptide are in part a consequence of membrane composition, peptide sequence, and mode of assembly within the membrane.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arispe N., Rojas E., Pollard H. B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):567–571. doi: 10.1073/pnas.90.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avdulov N. A., Chochina S. V., Igbavboa U., O'Hare E. O., Schroeder F., Cleary J. P., Wood W. G. Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem. 1997 May;68(5):2086–2091. doi: 10.1046/j.1471-4159.1997.68052086.x. [DOI] [PubMed] [Google Scholar]
  3. Barrow C. J., Zagorski M. G. Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science. 1991 Jul 12;253(5016):179–182. doi: 10.1126/science.1853202. [DOI] [PubMed] [Google Scholar]
  4. Bayerl T. M., Bloom M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J. 1990 Aug;58(2):357–362. doi: 10.1016/S0006-3495(90)82382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Behl C., Davis J. B., Klier F. G., Schubert D. Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res. 1994 May 9;645(1-2):253–264. doi: 10.1016/0006-8993(94)91659-4. [DOI] [PubMed] [Google Scholar]
  6. Blackley H. K., Patel N., Davies M. C., Roberts C. J., Tendler S. J., Wilkinson M. J., Williams P. M. Morphological development of beta(1-40) amyloid fibrils. Exp Neurol. 1999 Aug;158(2):437–443. doi: 10.1006/exnr.1999.7114. [DOI] [PubMed] [Google Scholar]
  7. Blanc E. M., Toborek M., Mark R. J., Hennig B., Mattson M. P. Amyloid beta-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J Neurochem. 1997 May;68(5):1870–1881. doi: 10.1046/j.1471-4159.1997.68051870.x. [DOI] [PubMed] [Google Scholar]
  8. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brooksbank B. W., Martinez M. Lipid abnormalities in the brain in adult Down's syndrome and Alzheimer's disease. Mol Chem Neuropathol. 1989 Dec;11(3):157–185. doi: 10.1007/BF03160049. [DOI] [PubMed] [Google Scholar]
  10. Cai X. D., Golde T. E., Younkin S. G. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science. 1993 Jan 22;259(5094):514–516. doi: 10.1126/science.8424174. [DOI] [PubMed] [Google Scholar]
  11. Cataldo A. M., Hamilton D. J., Barnett J. L., Paskevich P. A., Nixon R. A. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. J Neurosci. 1996 Jan;16(1):186–199. doi: 10.1523/JNEUROSCI.16-01-00186.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Choo-Smith L. P., Surewicz W. K. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 1997 Feb 3;402(2-3):95–98. doi: 10.1016/s0014-5793(96)01504-9. [DOI] [PubMed] [Google Scholar]
  13. Citron M., Vigo-Pelfrey C., Teplow D. B., Miller C., Schenk D., Johnston J., Winblad B., Venizelos N., Lannfelt L., Selkoe D. J. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11993–11997. doi: 10.1073/pnas.91.25.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Czajkowsky D. M., Allen M. J., Elings V., Shao Z. Direct visualization of surface charge in aqueous solution. Ultramicroscopy. 1998 Jul;74(1-2):1–5. doi: 10.1016/s0304-3991(98)00024-2. [DOI] [PubMed] [Google Scholar]
  15. Davis-Salinas J., Van Nostrand W. E. Amyloid beta-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells. J Biol Chem. 1995 Sep 8;270(36):20887–20890. doi: 10.1074/jbc.270.36.20887. [DOI] [PubMed] [Google Scholar]
  16. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., Ward P. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990 Jun 1;248(4959):1122–1124. doi: 10.1126/science.2111583. [DOI] [PubMed] [Google Scholar]
  17. Fletcher T. G., Keire D. A. The interaction of beta-amyloid protein fragment (12-28) with lipid environments. Protein Sci. 1997 Mar;6(3):666–675. doi: 10.1002/pro.5560060316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Giulian D., Haverkamp L. J., Yu J. H., Karshin W., Tom D., Li J., Kirkpatrick J., Kuo L. M., Roher A. E. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci. 1996 Oct 1;16(19):6021–6037. doi: 10.1523/JNEUROSCI.16-19-06021.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Groves J. T., Ulman N., Boxer S. G. Micropatterning fluid lipid bilayers on solid supports. Science. 1997 Jan 31;275(5300):651–653. doi: 10.1126/science.275.5300.651. [DOI] [PubMed] [Google Scholar]
  20. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 1992 Sep 24;359(6393):322–325. doi: 10.1038/359322a0. [DOI] [PubMed] [Google Scholar]
  21. Halverson K., Fraser P. E., Kirschner D. A., Lansbury P. T., Jr Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments. Biochemistry. 1990 Mar 20;29(11):2639–2644. doi: 10.1021/bi00463a003. [DOI] [PubMed] [Google Scholar]
  22. Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997 Feb;4(2):119–125. doi: 10.1016/s1074-5521(97)90255-6. [DOI] [PubMed] [Google Scholar]
  23. Huang T. H., Yang D. S., Plaskos N. P., Go S., Yip C. M., Fraser P. E., Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol. 2000 Mar 17;297(1):73–87. doi: 10.1006/jmbi.2000.3559. [DOI] [PubMed] [Google Scholar]
  24. Iwatsubo T., Mann D. M., Odaka A., Suzuki N., Ihara Y. Amyloid beta protein (A beta) deposition: A beta 42(43) precedes A beta 40 in Down syndrome. Ann Neurol. 1995 Mar;37(3):294–299. doi: 10.1002/ana.410370305. [DOI] [PubMed] [Google Scholar]
  25. Karrasch S., Hegerl R., Hoh J. H., Baumeister W., Engel A. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):836–838. doi: 10.1073/pnas.91.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kirschner D. A., Abraham C., Selkoe D. J. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A. 1986 Jan;83(2):503–507. doi: 10.1073/pnas.83.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kowalewski T., Holtzman D. M. In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3688–3693. doi: 10.1073/pnas.96.7.3688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kremer J. J., Pallitto M. M., Sklansky D. J., Murphy R. M. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry. 2000 Aug 22;39(33):10309–10318. doi: 10.1021/bi0001980. [DOI] [PubMed] [Google Scholar]
  29. Lin H., Zhu Y. J., Lal R. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry. 1999 Aug 24;38(34):11189–11196. doi: 10.1021/bi982997c. [DOI] [PubMed] [Google Scholar]
  30. Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1125–1129. doi: 10.1073/pnas.93.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lorenzo A., Yankner B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12243–12247. doi: 10.1073/pnas.91.25.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marqusee S., Robbins V. H., Baldwin R. L. Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5286–5290. doi: 10.1073/pnas.86.14.5286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mason R. P., Estermyer J. D., Kelly J. F., Mason P. E. Alzheimer's disease amyloid beta peptide 25-35 is localized in the membrane hydrocarbon core: x-ray diffraction analysis. Biochem Biophys Res Commun. 1996 May 6;222(1):78–82. doi: 10.1006/bbrc.1996.0699. [DOI] [PubMed] [Google Scholar]
  34. Mason R. P., Jacob R. F., Walter M. F., Mason P. E., Avdulov N. A., Chochina S. V., Igbavboa U., Wood W. G. Distribution and fluidizing action of soluble and aggregated amyloid beta-peptide in rat synaptic plasma membranes. J Biol Chem. 1999 Jun 25;274(26):18801–18807. doi: 10.1074/jbc.274.26.18801. [DOI] [PubMed] [Google Scholar]
  35. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mattson M. P., Begley J. G., Mark R. J., Furukawa K. Abeta25-35 induces rapid lysis of red blood cells: contrast with Abeta1-42 and examination of underlying mechanisms. Brain Res. 1997 Oct 10;771(1):147–153. doi: 10.1016/s0006-8993(97)00824-x. [DOI] [PubMed] [Google Scholar]
  37. May P. C., Gitter B. D., Waters D. C., Simmons L. K., Becker G. W., Small J. S., Robison P. M. beta-Amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol Aging. 1992 Sep-Oct;13(5):605–607. doi: 10.1016/0197-4580(92)90064-5. [DOI] [PubMed] [Google Scholar]
  38. McLaurin J., Chakrabartty A. Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes. Eur J Biochem. 1997 Apr 15;245(2):355–363. doi: 10.1111/j.1432-1033.1997.t01-2-00355.x. [DOI] [PubMed] [Google Scholar]
  39. McLaurin J., Chakrabartty A. Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J Biol Chem. 1996 Oct 25;271(43):26482–26489. doi: 10.1074/jbc.271.43.26482. [DOI] [PubMed] [Google Scholar]
  40. McLaurin J., Franklin T., Fraser P. E., Chakrabartty A. Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with gangliosides. J Biol Chem. 1998 Feb 20;273(8):4506–4515. doi: 10.1074/jbc.273.8.4506. [DOI] [PubMed] [Google Scholar]
  41. McLaurin J., Yang D., Yip C. M., Fraser P. E. Review: modulating factors in amyloid-beta fibril formation. J Struct Biol. 2000 Jun;130(2-3):259–270. doi: 10.1006/jsbi.2000.4289. [DOI] [PubMed] [Google Scholar]
  42. Mirzabekov T., Lin M. C., Yuan W. L., Marshall P. J., Carman M., Tomaselli K., Lieberburg I., Kagan B. L. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1142–1148. doi: 10.1006/bbrc.1994.2047. [DOI] [PubMed] [Google Scholar]
  43. Möller C., Allen M., Elings V., Engel A., Müller D. J. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J. 1999 Aug;77(2):1150–1158. doi: 10.1016/S0006-3495(99)76966-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Oda T., Wals P., Osterburg H. H., Johnson S. A., Pasinetti G. M., Morgan T. E., Rozovsky I., Stine W. B., Snyder S. W., Holzman T. F. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol. 1995 Nov;136(1):22–31. doi: 10.1006/exnr.1995.1080. [DOI] [PubMed] [Google Scholar]
  45. Paradis E., Douillard H., Koutroumanis M., Goodyer C., LeBlanc A. Amyloid beta peptide of Alzheimer's disease downregulates Bcl-2 and upregulates bax expression in human neurons. J Neurosci. 1996 Dec 1;16(23):7533–7539. doi: 10.1523/JNEUROSCI.16-23-07533.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993 Apr;13(4):1676–1687. doi: 10.1523/JNEUROSCI.13-04-01676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pillot T., Drouet B., Queillé S., Labeur C., Vandekerchkhove J., Rosseneu M., Pinçon-Raymond M., Chambaz J. The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem. 1999 Oct;73(4):1626–1634. doi: 10.1046/j.1471-4159.1999.0731626.x. [DOI] [PubMed] [Google Scholar]
  48. Pillot T., Goethals M., Vanloo B., Talussot C., Brasseur R., Vandekerckhove J., Rosseneu M., Lins L. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J Biol Chem. 1996 Nov 15;271(46):28757–28765. doi: 10.1074/jbc.271.46.28757. [DOI] [PubMed] [Google Scholar]
  49. Roher A. E., Chaney M. O., Kuo Y. M., Webster S. D., Stine W. B., Haverkamp L. J., Woods A. S., Cotter R. J., Tuohy J. M., Krafft G. A. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996 Aug 23;271(34):20631–20635. doi: 10.1074/jbc.271.34.20631. [DOI] [PubMed] [Google Scholar]
  50. Roher A. E., Palmer K. C., Yurewicz E. C., Ball M. J., Greenberg B. D. Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue. J Neurochem. 1993 Nov;61(5):1916–1926. doi: 10.1111/j.1471-4159.1993.tb09834.x. [DOI] [PubMed] [Google Scholar]
  51. Roher A., Wolfe D., Palutke M., KuKuruga D. Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2662–2666. doi: 10.1073/pnas.83.8.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sackmann E., Feder T. Budding, fission and domain formation in mixed lipid vesicles induced by lateral phase separation and macromolecular condensation. Mol Membr Biol. 1995 Jan-Mar;12(1):21–28. doi: 10.3109/09687689509038491. [DOI] [PubMed] [Google Scholar]
  53. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  54. Simmons L. K., May P. C., Tomaselli K. J., Rydel R. E., Fuson K. S., Brigham E. F., Wright S., Lieberburg I., Becker G. W., Brems D. N. Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol. 1994 Mar;45(3):373–379. [PubMed] [Google Scholar]
  55. Soto C., Castaño E. M., Kumar R. A., Beavis R. C., Frangione B. Fibrillogenesis of synthetic amyloid-beta peptides is dependent on their initial secondary structure. Neurosci Lett. 1995 Nov 17;200(2):105–108. doi: 10.1016/0304-3940(95)12089-m. [DOI] [PubMed] [Google Scholar]
  56. Sticht H., Bayer P., Willbold D., Dames S., Hilbich C., Beyreuther K., Frank R. W., Rösch P. Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease. Eur J Biochem. 1995 Oct 1;233(1):293–298. doi: 10.1111/j.1432-1033.1995.293_1.x. [DOI] [PubMed] [Google Scholar]
  57. Stine W. B., Jr, Snyder S. W., Ladror U. S., Wade W. S., Miller M. F., Perun T. J., Holzman T. F., Krafft G. A. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J Protein Chem. 1996 Feb;15(2):193–203. doi: 10.1007/BF01887400. [DOI] [PubMed] [Google Scholar]
  58. Suzuki N., Cheung T. T., Cai X. D., Odaka A., Otvos L., Jr, Eckman C., Golde T. E., Younkin S. G. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994 May 27;264(5163):1336–1340. doi: 10.1126/science.8191290. [DOI] [PubMed] [Google Scholar]
  59. Talafous J., Marcinowski K. J., Klopman G., Zagorski M. G. Solution structure of residues 1-28 of the amyloid beta-peptide. Biochemistry. 1994 Jun 28;33(25):7788–7796. doi: 10.1021/bi00191a006. [DOI] [PubMed] [Google Scholar]
  60. Terzi E., Hölzemann G., Seelig J. Alzheimer beta-amyloid peptide 25-35: electrostatic interactions with phospholipid membranes. Biochemistry. 1994 Jun 14;33(23):7434–7441. doi: 10.1021/bi00189a051. [DOI] [PubMed] [Google Scholar]
  61. Terzi E., Hölzemann G., Seelig J. Self-association of beta-amyloid peptide (1-40) in solution and binding to lipid membranes. J Mol Biol. 1995 Oct 6;252(5):633–642. doi: 10.1006/jmbi.1995.0525. [DOI] [PubMed] [Google Scholar]
  62. Tsai F. J., Torkelson J. M. On studying asymmetric membranes made from polymethylmethacrylate/xylene by the thermal-inversion method. Prog Clin Biol Res. 1989;292:119–128. [PubMed] [Google Scholar]
  63. Van Nostrand W. E., Melchor J. P., Ruffini L. Pathologic amyloid beta-protein cell surface fibril assembly on cultured human cerebrovascular smooth muscle cells. J Neurochem. 1998 Jan;70(1):216–223. doi: 10.1046/j.1471-4159.1998.70010216.x. [DOI] [PubMed] [Google Scholar]
  64. Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem. 1997 Aug 29;272(35):22364–22372. doi: 10.1074/jbc.272.35.22364. [DOI] [PubMed] [Google Scholar]
  65. Winkler RG, Spatz JP, Sheiko S, Möller M, Reineker P, Marti O. Imaging material properties by resonant tapping-force microscopy: A model investigation. Phys Rev B Condens Matter. 1996 Sep 15;54(12):8908–8912. doi: 10.1103/physrevb.54.8908. [DOI] [PubMed] [Google Scholar]
  66. Yamaguchi H., Maat-Schieman M. L., van Duinen S. G., Prins F. A., Neeskens P., Natté R., Roos R. A. Amyloid beta protein (Abeta) starts to deposit as plasma membrane-bound form in diffuse plaques of brains from hereditary cerebral hemorrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged subjects. J Neuropathol Exp Neurol. 2000 Aug;59(8):723–732. doi: 10.1093/jnen/59.8.723. [DOI] [PubMed] [Google Scholar]
  67. Yang A. J., Chandswangbhuvana D., Margol L., Glabe C. G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res. 1998 Jun 15;52(6):691–698. doi: 10.1002/(SICI)1097-4547(19980615)52:6<691::AID-JNR8>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  68. Yang D. S., Yip C. M., Huang T. H., Chakrabartty A., Fraser P. E. Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J Biol Chem. 1999 Nov 12;274(46):32970–32974. doi: 10.1074/jbc.274.46.32970. [DOI] [PubMed] [Google Scholar]
  69. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  70. Yip C. M., Brader M. L., DeFelippis M. R., Ward M. D. Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure. Biophys J. 1998 May;74(5):2199–2209. doi: 10.1016/S0006-3495(98)77929-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Yip C. M., Brader M. L., Frank B. H., DeFelippis M. R., Ward M. D. Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy. Biophys J. 2000 Jan;78(1):466–473. doi: 10.1016/S0006-3495(00)76609-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Yip C. M., DeFelippis M. R., Frank B. H., Brader M. L., Ward M. D. Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly. Biophys J. 1998 Sep;75(3):1172–1179. doi: 10.1016/S0006-3495(98)74036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Yip C. M., Ward M. D. Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Biophys J. 1996 Aug;71(2):1071–1078. doi: 10.1016/S0006-3495(96)79307-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES