Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1395–1405. doi: 10.1016/S0006-3495(01)76112-7

Is there a conserved interaction between cardiolipin and the type II bacterial reaction center?

M C Wakeham 1, R B Sessions 1, M R Jones 1, P K Fyfe 1
PMCID: PMC1301331  PMID: 11222300

Abstract

In a recent publication, the structural details of an interaction between the Rhodobacter sphaeroides reaction center and the anionic phospholipid diphosphatidyl glycerol (cardiolipin) were described (K. E. McAuley, P. K. Fyfe, J. P. Ridge, N. W. Isaacs, R. J. Cogdell, and M. R. Jones, 1999, Proc. Natl. Acad. Sci. U.S.A. 96:14706-14711). This was the first crystallographic description of an interaction between this biologically important lipid and an integral membrane protein and was also the first piece of evidence that the reaction center has a specific interaction with cardiolipin. We have examined the extent to which the residues that interact with the cardiolipin are conserved in other species of photosynthetic bacteria with this type of reaction center and discuss the possibility that this cardiolipin binding site is a conserved feature of these reaction centers. We look at how sequence variations that would affect the shape of the cardiolipin binding site might affect the protein-cardiolipin interaction, by modeling the binding of cardiolipin to the reaction center from Rhodopseudomonas viridis.

Full Text

The Full Text of this article is available as a PDF (310.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awasthi Y. C., Chuang T. F., Keenan T. W., Crane F. L. Tightly bound cardiolipin in cytochrome oxidase. Biochim Biophys Acta. 1971 Jan 12;226(1):42–52. doi: 10.1016/0005-2728(71)90176-9. [DOI] [PubMed] [Google Scholar]
  2. Axelrod H. L., Abresch E. C., Paddock M. L., Okamura M. Y., Feher G. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1542–1547. doi: 10.1073/pnas.97.4.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bairoch A., Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000 Jan 1;28(1):45–48. doi: 10.1093/nar/28.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. GenBank. Nucleic Acids Res. 1999 Jan 1;27(1):12–17. doi: 10.1093/nar/27.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birrell G. B., Sistrom W. R., Griffith O. H. Lipid-protein associations in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochemistry. 1978 Sep 5;17(18):3768–3773. doi: 10.1021/bi00611a015. [DOI] [PubMed] [Google Scholar]
  6. Bélanger G., Bérard J., Corriveau P., Gingras G. The structural genes coding for the L and M subunits of Rhodospirillum rubrum photoreaction center. J Biol Chem. 1988 Jun 5;263(16):7632–7638. [PubMed] [Google Scholar]
  7. Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
  8. Deisenhofer J., Michel H. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 1989 Aug;8(8):2149–2170. doi: 10.1002/j.1460-2075.1989.tb08338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232. doi: 10.1146/annurev.biochem.66.1.199. [DOI] [PubMed] [Google Scholar]
  10. Ermler U., Fritzsch G., Buchanan S. K., Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure. 1994 Oct 15;2(10):925–936. doi: 10.1016/s0969-2126(94)00094-8. [DOI] [PubMed] [Google Scholar]
  11. Ermler U., Michel H., Schiffer M. Structure and function of the photosynthetic reaction center from Rhodobacter sphaeroides. J Bioenerg Biomembr. 1994 Feb;26(1):5–15. doi: 10.1007/BF00763216. [DOI] [PubMed] [Google Scholar]
  12. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Francia F., Wang J., Venturoli G., Melandri B. A., Barz W. P., Oesterhelt D. The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry. 1999 May 25;38(21):6834–6845. doi: 10.1021/bi982891h. [DOI] [PubMed] [Google Scholar]
  14. Hoch F. L. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992 Mar 26;1113(1):71–133. doi: 10.1016/0304-4157(92)90035-9. [DOI] [PubMed] [Google Scholar]
  15. Ioannou P. V., Golding B. T. Cardiolipins: their chemistry and biochemistry. Prog Lipid Res. 1979;17(3):279–318. doi: 10.1016/0079-6832(79)90010-7. [DOI] [PubMed] [Google Scholar]
  16. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  17. Komiya H., Yeates T. O., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9012–9016. doi: 10.1073/pnas.85.23.9012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lancaster C. R., Michel H. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol. 1999 Feb 26;286(3):883–898. doi: 10.1006/jmbi.1998.2532. [DOI] [PubMed] [Google Scholar]
  19. Lancaster C. R., Michel H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure. 1997 Oct 15;5(10):1339–1359. doi: 10.1016/s0969-2126(97)00285-2. [DOI] [PubMed] [Google Scholar]
  20. Loach P. A. Supramolecular complexes in photosynthetic bacteria. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5016–5018. doi: 10.1073/pnas.97.10.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  22. McAuley K. E., Fyfe P. K., Cogdell R. J., Isaacs N. W., Jones M. R. X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Lett. 2000 Feb 11;467(2-3):285–290. doi: 10.1016/s0014-5793(00)01172-8. [DOI] [PubMed] [Google Scholar]
  23. McAuley K. E., Fyfe P. K., Ridge J. P., Isaacs N. W., Cogdell R. J., Jones M. R. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14706–14711. doi: 10.1073/pnas.96.26.14706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Michel H., Weyer K. A., Gruenberg H., Dunger I., Oesterhelt D., Lottspeich F. The 'light' and 'medium' subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J. 1986 Jun;5(6):1149–1158. doi: 10.1002/j.1460-2075.1986.tb04340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morrison L., Runquist J., Loach P. Ubiquinone and photochemical activity in Rhodospirillum rubrum. Photochem Photobiol. 1977 Jan;25(1):73–84. doi: 10.1111/j.1751-1097.1977.tb07426.x. [DOI] [PubMed] [Google Scholar]
  26. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  27. Ostermeier C., Harrenga A., Ermler U., Michel H. Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10547–10553. doi: 10.1073/pnas.94.20.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robinson N. C. Specificity and binding affinity of phospholipids to the high-affinity cardiolipin sites of beef heart cytochrome c oxidase. Biochemistry. 1982 Jan 5;21(1):184–188. doi: 10.1021/bi00530a031. [DOI] [PubMed] [Google Scholar]
  29. Russell N. J., Harwood J. L. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J. 1979 Aug 1;181(2):339–345. doi: 10.1042/bj1810339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stowell M. H., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science. 1997 May 2;276(5313):812–816. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  33. Williams J. C., Steiner L. A., Feher G. Primary structure of the reaction center from Rhodopseudomonas sphaeroides. Proteins. 1986 Dec;1(4):312–325. doi: 10.1002/prot.340010405. [DOI] [PubMed] [Google Scholar]
  34. Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell. 1984 Jul;37(3):949–957. doi: 10.1016/0092-8674(84)90429-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES