Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1406–1416. doi: 10.1016/S0006-3495(01)76113-9

Determination of membrane immersion depth with O(2): a high-pressure (19)F NMR study.

R S Prosser 1, P A Luchette 1, P W Westerman 1, A Rozek 1, R E Hancock 1
PMCID: PMC1301332  PMID: 11222301

Abstract

Oxygen is known to partition with an increasing concentration gradient toward the hydrophobic membrane interior. At partial pressures (P(O2)) of 100 Atm or more, this concentration gradient is sufficient to induce paramagnetic effects that depend sensitively on membrane immersion depth. This effect is demonstrated for the fluorine nucleus by depth-dependent paramagnetic shifts and spin-lattice relaxation rates, using a fluorinated detergent, CF3(CF(2))(5)C(2)H(4)-O-maltose (TFOM), reconstituted into a lipid bilayer model membrane system. To interpret the spin-lattice relaxation rates (R) in terms of a precise immersion depth, two specifically fluorinated cholesterol species (6-fluorocholesterol and 25-fluorocholesterol), whose membrane immersion depths were independently estimated, were studied by (19)F NMR. The paramagnetic relaxation rates, R, of the cholesterol species were then used to parameterize a Gaussian profile that directly relates R to immersion depth z. This same Gaussian curve could then be used to determine the membrane immersion depth of all six fluorinated chain positions of TFOM and of two adjacent residues of specifically fluorinated analogs of the antibacterial peptide indolicidin. The potential of this method for determination of immersion depth and topology of membrane proteins is discussed.

Full Text

The Full Text of this article is available as a PDF (129.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altenbach C., Marti T., Khorana H. G., Hubbell W. L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science. 1990 Jun 1;248(4959):1088–1092. doi: 10.1126/science.2160734. [DOI] [PubMed] [Google Scholar]
  3. Bonev B. B., Morrow M. R. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study. Biophys J. 1995 Aug;69(2):518–523. doi: 10.1016/S0006-3495(95)79925-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braganza L. F., Worcester D. L. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986 May 6;25(9):2591–2596. doi: 10.1021/bi00357a047. [DOI] [PubMed] [Google Scholar]
  5. Brown L. R., Braun W., Kumar A., Wüthrich K. High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys J. 1982 Jan;37(1):319–328. doi: 10.1016/S0006-3495(82)84680-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caffrey M., Wang J. Membrane-structure studies using X-ray standing waves. Annu Rev Biophys Biomol Struct. 1995;24:351–377. doi: 10.1146/annurev.bb.24.060195.002031. [DOI] [PubMed] [Google Scholar]
  7. Chupin V., Killian J. A., Breg J., de Jongh H. H., Boelens R., Kaptein R., de Kruijff B. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Biochemistry. 1995 Sep 12;34(36):11617–11624. doi: 10.1021/bi00036a038. [DOI] [PubMed] [Google Scholar]
  8. Danielson M. A., Falke J. J. Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct. 1996;25:163–195. doi: 10.1146/annurev.bb.25.060196.001115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dettman H. D., Weiner J. H., Sykes B. D. 19F nuclear magnetic resonance studies of the coat protein of bacteriophage M13 in synthetic phospholipid vesicles and deoxycholate micelles. Biophys J. 1982 Jan;37(1):243–251. doi: 10.1016/S0006-3495(82)84673-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Esposito G., Lesk A. M., Molinari H., Motta A., Niccolai N., Pastore A. Probing protein structure by solvent perturbation of nuclear magnetic resonance spectra. Nuclear magnetic resonance spectral editing and topological mapping in proteins by paramagnetic relaxation filtering. J Mol Biol. 1992 Apr 5;224(3):659–670. doi: 10.1016/0022-2836(92)90551-t. [DOI] [PubMed] [Google Scholar]
  11. Franklin J. C., Ellena J. F., Jayasinghe S., Kelsh L. P., Cafiso D. S. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry. 1994 Apr 5;33(13):4036–4045. doi: 10.1021/bi00179a032. [DOI] [PubMed] [Google Scholar]
  12. Harte R. A., Yeaman S. J., McElhinney J., Suckling C. J., Jackson B., Suckling K. E. Effects of novel synthetic sterol probes on enzymes of cholesterol metabolism in cell-free and cellular systems. Chem Phys Lipids. 1996 Sep 16;83(1):45–59. doi: 10.1016/0009-3084(96)02593-5. [DOI] [PubMed] [Google Scholar]
  13. Hubbell W. L., Mchaourab H. S., Altenbach C., Lietzow M. A. Watching proteins move using site-directed spin labeling. Structure. 1996 Jul 15;4(7):779–783. doi: 10.1016/s0969-2126(96)00085-8. [DOI] [PubMed] [Google Scholar]
  14. Katsaras J. X-ray diffraction studies of oriented lipid bilayers. Biochem Cell Biol. 1995 May-Jun;73(5-6):209–218. doi: 10.1139/o95-025. [DOI] [PubMed] [Google Scholar]
  15. Kauffman J. M., Westerman P. W., Carey M. C. Fluorocholesterols, in contrast to hydroxycholesterols, exhibit interfacial properties similar to cholesterol. J Lipid Res. 2000 Jun;41(6):991–1003. [PubMed] [Google Scholar]
  16. Kimmich R., Peters A. Solvation of oxygen in lecithin bilayers. Chem Phys Lipids. 1975 Aug;14(4):350–362. doi: 10.1016/0009-3084(75)90072-9. [DOI] [PubMed] [Google Scholar]
  17. Knott R. B., Schoenborn B. P. Quantitation of water in membranes by neutron diffraction and X-ray techniques. Methods Enzymol. 1986;127:217–229. doi: 10.1016/0076-6879(86)27018-4. [DOI] [PubMed] [Google Scholar]
  18. Lohner K., Prenner E. J. Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):141–156. doi: 10.1016/s0005-2736(99)00204-7. [DOI] [PubMed] [Google Scholar]
  19. Marsan M. P., Muller I., Ramos C., Rodriguez F., Dufourc E. J., Czaplicki J., Milon A. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J. 1999 Jan;76(1 Pt 1):351–359. doi: 10.1016/S0006-3495(99)77202-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Papavoine C. H., Konings R. N., Hilbers C. W., van de Ven F. J. Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR. Biochemistry. 1994 Nov 8;33(44):12990–12997. doi: 10.1021/bi00248a007. [DOI] [PubMed] [Google Scholar]
  21. Prosser R. S., Luchette P. A., Westerman P. W. Using O2 to probe membrane immersion depth by 19F NMR. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9967–9971. doi: 10.1073/pnas.170295297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ram P., Prestegard J. H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim Biophys Acta. 1988 May 24;940(2):289–294. doi: 10.1016/0005-2736(88)90203-9. [DOI] [PubMed] [Google Scholar]
  23. Ramamoorthy A., Wu C. H., Opella S. J. Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei. J Magn Reson B. 1995 Apr;107(1):88–90. doi: 10.1006/jmrb.1995.1063. [DOI] [PubMed] [Google Scholar]
  24. Sanders C. R., 2nd, Prestegard J. H. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J. 1990 Aug;58(2):447–460. doi: 10.1016/S0006-3495(90)82390-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
  26. Sanders C. R., Prosser R. S. Bicelles: a model membrane system for all seasons? Structure. 1998 Oct 15;6(10):1227–1234. doi: 10.1016/s0969-2126(98)00123-3. [DOI] [PubMed] [Google Scholar]
  27. Steinhoff H. J., Mollaaghababa R., Altenbach C., Khorana H. G., Hubbell W. L. Site directed spin labeling studies of structure and dynamics in bacteriorhodopsin. Biophys Chem. 1995 Sep-Oct;56(1-2):89–94. doi: 10.1016/0301-4622(95)00019-t. [DOI] [PubMed] [Google Scholar]
  28. Sykes B. D., Hull W. E. Fluorine nuclear magnetic resonance studies of proteins. Methods Enzymol. 1978;49:270–295. doi: 10.1016/s0076-6879(78)49015-9. [DOI] [PubMed] [Google Scholar]
  29. Vold R. R., Prosser R. S., Deese A. J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR. 1997 Apr;9(3):329–335. doi: 10.1023/a:1018643312309. [DOI] [PubMed] [Google Scholar]
  30. Windrem D. A., Plachy W. Z. The diffusion-solubility of oxygen in lipid bilayers. Biochim Biophys Acta. 1980 Aug 14;600(3):655–665. doi: 10.1016/0005-2736(80)90469-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES