Abstract
Time-resolved Fourier transform infrared (FTIR) difference spectra of the halorhodopsin (hR) photocycle have been collected from 3 micros to 100 ms in saturating concentrations of KCl or KBr. Kinetic analysis of these data revealed two decay processes, with time constants of tau(1) approximately 150 micros and tau(2) approximately 16 ms in the presence of either halide, with tau(2) describing the return to the starting (hR) state. Comparison to previous low-temperature FTIR spectra of hR intermediates confirms that characteristic hK and hL spectral features are both present before the tau(1) decay, in a state previously defined as hK(L) (Dioumaev, A., and M. Braiman. 1997. Photochem. Photobiol. 66:755-763). However, the relative sizes of these features depend on which halide is present. In Br-, the hL features are clearly more dominant than in Cl-. Therefore, the state present before tau(1) is probably best described as an hK(L)/hL(1) equilibrium, instead of a single hK(L) state. Different halides affect the relative amounts of hK(L) and hL(1) present, i.e., Cl- produces a much more significant back-reaction from hL(1) to hK(L) than does Br-. The halide dependence of this back-reaction could therefore explain the halide selectivity of the halorhodopsin anion pump.
Full Text
The Full Text of this article is available as a PDF (194.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames J. B., Raap J., Lugtenburg J., Mathies R. A. Resonance Raman study of halorhodopsin photocycle kinetics, chromophore structure, and chloride-pumping mechanism. Biochemistry. 1992 Dec 22;31(50):12546–12554. doi: 10.1021/bi00165a002. [DOI] [PubMed] [Google Scholar]
- Bivin D. B., Stoeckenius W. Photoactive retinal pigments in haloalkaliphilic bacteria. J Gen Microbiol. 1986 Aug;132(8):2167–2177. doi: 10.1099/00221287-132-8-2167. [DOI] [PubMed] [Google Scholar]
- Braiman M. S., Ahl P. L., Rothschild K. J. Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5221–5225. doi: 10.1073/pnas.84.15.5221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braiman M. S., Walter T. J., Briercheck D. M. Infrared spectroscopic detection of light-induced change in chloride-arginine interaction in halorhodopsin. Biochemistry. 1994 Feb 22;33(7):1629–1635. doi: 10.1021/bi00173a003. [DOI] [PubMed] [Google Scholar]
- Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J. 1996 Nov;71(5):2329–2345. doi: 10.1016/S0006-3495(96)79475-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chon Y. S., Kandori H., Sasaki J., Lanyi J. K., Needleman R., Maeda A. Existence of two L photointermediates of halorhodopsin from Halobacterium salinarium, differing in their protein and water FTIR bands. Biochemistry. 1999 Jul 20;38(29):9449–9455. doi: 10.1021/bi9903042. [DOI] [PubMed] [Google Scholar]
- Dioumaev A. K., Braiman M. S. Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle. Photochem Photobiol. 1997 Dec;66(6):755–763. doi: 10.1111/j.1751-1097.1997.tb03220.x. [DOI] [PubMed] [Google Scholar]
- Dioumaev A. K. Evaluation of intrinsic chemical kinetics and transient product spectra from time-resolved spectroscopic data. Biophys Chem. 1997 Sep 1;67(1-3):1–25. doi: 10.1016/s0301-4622(96)02268-5. [DOI] [PubMed] [Google Scholar]
- Duschl A., Lanyi J. K., Zimányi L. Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem. 1990 Jan 25;265(3):1261–1267. [PubMed] [Google Scholar]
- Duschl A., McCloskey M. A., Lanyi J. K. Functional reconstitution of halorhodopsin. Properties of halorhodopsin-containing proteoliposomes. J Biol Chem. 1988 Nov 15;263(32):17016–17022. [PubMed] [Google Scholar]
- Fodor S. P., Bogomolni R. A., Mathies R. A. Structure of the retinal chromophore in the hRL intermediate of halorhodopsin from resonance raman spectroscopy. Biochemistry. 1987 Oct 20;26(21):6775–6778. doi: 10.1021/bi00395a029. [DOI] [PubMed] [Google Scholar]
- Gerscher S., Mylrajan M., Hildebrandt P., Baron M. H., Müller R., Engelhard M. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy. Biochemistry. 1997 Sep 9;36(36):11012–11020. doi: 10.1021/bi970722b. [DOI] [PubMed] [Google Scholar]
- Hazemoto N., Kamo N., Kobatake Y., Tsuda M., Terayama Y. Effect of salt on photocycle and ion-pumping of halorhodopsin and third rhodopsinlike pigment of Halobacterium halobium. Biophys J. 1984 Jun;45(6):1073–1077. doi: 10.1016/S0006-3495(84)84254-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hessling B., Souvignier G., Gerwert K. A model-independent approach to assigning bacteriorhodopsin's intramolecular reactions to photocycle intermediates. Biophys J. 1993 Nov;65(5):1929–1941. doi: 10.1016/S0006-3495(93)81264-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heymann J. A., Havelka W. A., Oesterhelt D. Homologous overexpression of a light-driven anion pump in an archaebacterium. Mol Microbiol. 1993 Feb;7(4):623–630. doi: 10.1111/j.1365-2958.1993.tb01153.x. [DOI] [PubMed] [Google Scholar]
- Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K., Duschl A., Váro G., Zimányi L. Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism. FEBS Lett. 1990 Jun 4;265(1-2):1–6. doi: 10.1016/0014-5793(90)80869-k. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Light-dependent trans to cis isomerization of the retinal in halorhodopsin. FEBS Lett. 1984 Oct 1;175(2):337–342. doi: 10.1016/0014-5793(84)80764-4. [DOI] [PubMed] [Google Scholar]
- Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuno D., Asaumi M., Muneyuki E. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry. 1999 Apr 27;38(17):5422–5429. doi: 10.1021/bi9826456. [DOI] [PubMed] [Google Scholar]
- Pande C., Lanyi J. K., Callender R. H. Effects of various anions on the Raman spectrum of halorhodopsin. Biophys J. 1989 Mar;55(3):425–431. doi: 10.1016/S0006-3495(89)82836-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polland H. J., Franz M. A., Zinth W., Kaiser W., Hegemann P., Oesterhelt D. Picosecond events in the photochemical cycle of the light-driven chloride-pump halorhodopsin. Biophys J. 1985 Jan;47(1):55–59. doi: 10.1016/S0006-3495(85)83876-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothschild K. J., Bousché O., Braiman M. S., Hasselbacher C. A., Spudich J. L. Fourier transform infrared study of the halorhodopsin chloride pump. Biochemistry. 1988 Apr 5;27(7):2420–2424. doi: 10.1021/bi00407a026. [DOI] [PubMed] [Google Scholar]
- Rüdiger M., Haupts U., Gerwert K., Oesterhelt D. Chemical reconstitution of a chloride pump inactivated by a single point mutation. EMBO J. 1995 Apr 18;14(8):1599–1606. doi: 10.1002/j.1460-2075.1995.tb07148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüdiger M., Oesterhelt D. Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J. 1997 Jul 1;16(13):3813–3821. doi: 10.1093/emboj/16.13.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schobert B., Lanyi J. K., Cragoe E. J., Jr Evidence for a halide-binding site in halorhodopsin. J Biol Chem. 1983 Dec 25;258(24):15158–15164. [PubMed] [Google Scholar]
- Schobert B., Lanyi J. K. Electrostatic interaction between anions bound to site I and the retinal Schiff base of halorhodopsin. Biochemistry. 1986 Jul 15;25(14):4163–4167. doi: 10.1021/bi00362a026. [DOI] [PubMed] [Google Scholar]
- Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
- Spencer D. B., Dewey T. G. Activation parameters for the halorhodopsin photocycle: a phase lifetime spectroscopic study of the 520- and 640-nanometer intermediates. Biochemistry. 1990 Mar 27;29(12):3140–3145. doi: 10.1021/bi00464a034. [DOI] [PubMed] [Google Scholar]
- Steiner M., Oesterhelt D., Ariki M., Lanyi J. K. Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem. 1984 Feb 25;259(4):2179–2184. [PubMed] [Google Scholar]
- Váró G., Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry. 1995 Nov 7;34(44):14490–14499. doi: 10.1021/bi00044a027. [DOI] [PubMed] [Google Scholar]
- Váró G., Zimányi L., Fan X., Sun L., Needleman R., Lanyi J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J. 1995 May;68(5):2062–2072. doi: 10.1016/S0006-3495(95)80385-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter T. J., Braiman M. S. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base. Biochemistry. 1994 Feb 22;33(7):1724–1733. doi: 10.1021/bi00173a015. [DOI] [PubMed] [Google Scholar]
- Zimányi L., Keszthelyi L., Lanyi J. K. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin. Biochemistry. 1989 Jun 13;28(12):5165–5172. doi: 10.1021/bi00438a038. [DOI] [PubMed] [Google Scholar]
- Zimányi L., Lanyi J. K. Low-temperature photoreactions of halorhodopsin. 2. Description of the photocycle and its intermediates. Biochemistry. 1989 Feb 21;28(4):1662–1666. doi: 10.1021/bi00430a035. [DOI] [PubMed] [Google Scholar]
- Zimányi L., Lanyi J. K. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 2. Effects of anions on the halorhodopsin photocycle. Biochemistry. 1989 Jun 13;28(12):5172–5178. doi: 10.1021/bi00438a039. [DOI] [PubMed] [Google Scholar]