Abstract
The mechanism that renders collagen molecules more stable when precipitated as fibers than the same molecules in solution is controversial. According to the polymer-melting mechanism the presence of a solvent depresses the melting point of the polymer due to a thermodynamic mechanism resembling the depression of the freezing point of a solvent due to the presence of a solute. On the other hand, according to the polymer-in-a-box mechanism, the change in configurational entropy of the collagen molecule on denaturation is reduced by its confinement by surrounding molecules in the fiber. Both mechanisms predict an approximately linear increase in the reciprocal of the denaturation temperature with the volume fraction (epsilon) of solvent, but the polymer-melting mechanism predicts that the slope is inversely proportional to the molecular mass of the solvent (M), whereas the polymer-in-a-box mechanism predicts a slope that is independent of M. Differential scanning calorimetry was used to measure the denaturation temperature of collagen in different concentrations of ethylene glycol (M = 62) and the slope found to be (7.29 +/- 0.37) x 10(-4) K(-1), compared with (7.31 +/- 0.42) x 10(-4) K(-1) for water (M = 18). This behavior was consistent with the polymer-in-a-box mechanism but conflicts with the polymer-melting mechanism. Calorimetry showed that the enthalpy of denaturation of collagen fibers in ethylene glycol was high, varied only slowly within the glycol volume fraction range 0.2 to 1, and fell rapidly at low epsilon. That this was caused by the disruption of a network of hydrogen-bonded glycol molecules surrounding the collagen is the most likely explanation.
Full Text
The Full Text of this article is available as a PDF (78.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey A. J., Sims T. J., Avery N. C., Miles C. A. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules. Biochem J. 1993 Dec 1;296(Pt 2):489–496. doi: 10.1042/bj2960489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck K., Brodsky B. Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. J Struct Biol. 1998;122(1-2):17–29. doi: 10.1006/jsbi.1998.3965. [DOI] [PubMed] [Google Scholar]
- Bella J., Brodsky B., Berman H. M. Hydration structure of a collagen peptide. Structure. 1995 Sep 15;3(9):893–906. doi: 10.1016/S0969-2126(01)00224-6. [DOI] [PubMed] [Google Scholar]
- Bella J., Eaton M., Brodsky B., Berman H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994 Oct 7;266(5182):75–81. doi: 10.1126/science.7695699. [DOI] [PubMed] [Google Scholar]
- Burjanadze T. V. Thermodynamic substantiation of water-bridged collagen structure. Biopolymers. 1992 Aug;32(8):941–949. doi: 10.1002/bip.360320805. [DOI] [PubMed] [Google Scholar]
- Burjanadze T. V., Veis A. A thermodynamic analysis of the contribution of hydroxyproline to the structural stability of the collagen triple helix. Connect Tissue Res. 1997;36(4):347–365. doi: 10.3109/03008209709160233. [DOI] [PubMed] [Google Scholar]
- Christensen R. G., Cassel J. M. Volume changes accompanying collagen denaturation. Biopolymers. 1967;5(8):685–689. doi: 10.1002/bip.1967.360050802. [DOI] [PubMed] [Google Scholar]
- Engel J., Chen H. T., Prockop D. J., Klump H. The triple helix in equilibrium with coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers. 1977 Mar;16(3):601–622. doi: 10.1002/bip.1977.360160310. [DOI] [PubMed] [Google Scholar]
- Engel J., Prockop D. J. Does bound water contribute to the stability of collagen? Matrix Biol. 1998 Dec;17(8-9):679–680. doi: 10.1016/s0945-053x(98)90119-6. [DOI] [PubMed] [Google Scholar]
- Hauschka P. V., Harrington W. F. Collagen structure in solution. 3. Effec of ross-links on thermal stability and refolding kinetics. Biochemistry. 1970 Sep 15;9(19):3734–3745. doi: 10.1021/bi00821a012. [DOI] [PubMed] [Google Scholar]
- Holmgren S. K., Taylor K. M., Bretscher L. E., Raines R. T. Code for collagen's stability deciphered. Nature. 1998 Apr 16;392(6677):666–667. doi: 10.1038/33573. [DOI] [PubMed] [Google Scholar]
- Kramer R. Z., Bella J., Mayville P., Brodsky B., Berman H. M. Sequence dependent conformational variations of collagen triple-helical structure. Nat Struct Biol. 1999 May;6(5):454–457. doi: 10.1038/8259. [DOI] [PubMed] [Google Scholar]
- Kramer R. Z., Vitagliano L., Bella J., Berisio R., Mazzarella L., Brodsky B., Zagari A., Berman H. M. X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly). J Mol Biol. 1998 Jul 24;280(4):623–638. doi: 10.1006/jmbi.1998.1881. [DOI] [PubMed] [Google Scholar]
- Kuznetsova N., Rau D. C., Parsegian V. A., Leikin S. Solvent hydrogen-bond network in protein self-assembly: solvation of collagen triple helices in nonaqueous solvents. Biophys J. 1997 Jan;72(1):353–362. doi: 10.1016/S0006-3495(97)78674-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles C. A., Burjanadze T. V., Bailey A. J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995 Jan 27;245(4):437–446. doi: 10.1006/jmbi.1994.0035. [DOI] [PubMed] [Google Scholar]
- Miles C. A., Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999 Jun;76(6):3243–3252. doi: 10.1016/S0006-3495(99)77476-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles C. A. Kinetics of collagen denaturation in mammalian lens capsules studied by differential scanning calorimetry. Int J Biol Macromol. 1993 Oct;15(5):265–271. doi: 10.1016/0141-8130(93)90025-h. [DOI] [PubMed] [Google Scholar]
- Na G. C. Monomer and oligomer of type I collagen: molecular properties and fibril assembly. Biochemistry. 1989 Sep 5;28(18):7161–7167. doi: 10.1021/bi00444a005. [DOI] [PubMed] [Google Scholar]
- Panasik N., Jr, Eberhardt E. S., Edison A. S., Powell D. R., Raines R. T. Inductive effects on the structure of proline residues. Int J Pept Protein Res. 1994 Sep;44(3):262–269. doi: 10.1111/j.1399-3011.1994.tb00169.x. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
- Ramachandran G. N., Bansal M., Bhatnagar R. S. A hypothesis on the role of hydroxyproline in stabilizing collagen structure. Biochim Biophys Acta. 1973 Sep 21;322(1):166–171. doi: 10.1016/0005-2795(73)90187-6. [DOI] [PubMed] [Google Scholar]