Abstract
The kinetics of chain disruption and collapse of staphylococcal nuclease after positive or negative pressure jumps was monitored by real-time small-angle x-ray scattering under pressure. We used this method to probe the overall conformation of the protein by measuring its radius of gyration and pair-distance-distribution function p(r) which are sensitive to the spatial extent and shape of the particle. At all pressures and temperatures tested, the relaxation profiles were well described by a single exponential function. No fast collapse was observed, indicating that the rate limiting step for chain collapse is the same as that for secondary and tertiary structure formation. Whereas refolding at low pressures occurred in a few seconds, at high pressures the relaxation was quite slow, approximately 1 h, due to a large positive activation volume for the rate-limiting step for chain collapse. A large increase in the system volume upon folding implies significant dehydration of the transition state and a high degree of similarity in terms of the packing density between the native and transition states in this system. This study of the time-dependence of the tertiary structure in pressure-induced folding/unfolding reactions demonstrates that novel information about the nature of protein folding transitions and transition states can be obtained from a combination of small-angle x-ray scattering using high intensity synchrotron radiation with the high pressure perturbation technique.
Full Text
The Full Text of this article is available as a PDF (72.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carra J. H., Anderson E. A., Privalov P. L. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants. Biochemistry. 1994 Sep 6;33(35):10842–10850. doi: 10.1021/bi00201a035. [DOI] [PubMed] [Google Scholar]
- Carra J. H., Privalov P. L. Energetics of denaturation and m values of staphylococcal nuclease mutants. Biochemistry. 1995 Feb 14;34(6):2034–2041. doi: 10.1021/bi00006a025. [DOI] [PubMed] [Google Scholar]
- Chan H. S., Dill K. A. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins. 1998 Jan;30(1):2–33. doi: 10.1002/(sici)1097-0134(19980101)30:1<2::aid-prot2>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. Kinetic evidence of microscopic states in protein folding. Biochemistry. 1992 Dec 15;31(49):12369–12375. doi: 10.1021/bi00164a011. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. pH-induced folding/unfolding of staphylococcal nuclease: determination of kinetic parameters by the sequential-jump method. Biochemistry. 1992 Feb 11;31(5):1483–1491. doi: 10.1021/bi00120a027. [DOI] [PubMed] [Google Scholar]
- Chen L., Wildegger G., Kiefhaber T., Hodgson K. O., Doniach S. Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. J Mol Biol. 1998 Feb 13;276(1):225–237. doi: 10.1006/jmbi.1997.1514. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
- Flanagan J. M., Kataoka M., Shortle D., Engelman D. M. Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):748–752. doi: 10.1073/pnas.89.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frye K. J., Perman C. S., Royer C. A. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Biochemistry. 1996 Aug 6;35(31):10234–10239. doi: 10.1021/bi960693p. [DOI] [PubMed] [Google Scholar]
- Frye K. J., Royer C. A. Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci. 1998 Oct;7(10):2217–2222. doi: 10.1002/pro.5560071020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
- Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
- Ikura T., Tsurupa G. P., Kuwajima K. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations. Biochemistry. 1997 May 27;36(21):6529–6538. doi: 10.1021/bi963174v. [DOI] [PubMed] [Google Scholar]
- Ionescu R. M., Eftink M. R. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Biochemistry. 1997 Feb 4;36(5):1129–1140. doi: 10.1021/bi9609681. [DOI] [PubMed] [Google Scholar]
- Miller W. G., Goebel C. V. Dimensions of protein random coils. Biochemistry. 1968 Nov;7(11):3925–3935. doi: 10.1021/bi00851a021. [DOI] [PubMed] [Google Scholar]
- Mohana-Borges R., Silva J. L., Ruiz-Sanz J., de Prat-Gay G. Folding of a pressure-denatured model protein. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7888–7893. doi: 10.1073/pnas.96.14.7888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Nakano T., Antonino L. C., Fox R. O., Fink A. L. Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease. Biochemistry. 1993 Mar 16;32(10):2534–2541. doi: 10.1021/bi00061a010. [DOI] [PubMed] [Google Scholar]
- Panick G., Malessa R., Winter R., Rapp G., Frye K. J., Royer C. A. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. J Mol Biol. 1998 Jan 16;275(2):389–402. doi: 10.1006/jmbi.1997.1454. [DOI] [PubMed] [Google Scholar]
- Panick G., Vidugiris G. J., Malessa R., Rapp G., Winter R., Royer C. A. Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry. 1999 Mar 30;38(13):4157–4164. doi: 10.1021/bi982608e. [DOI] [PubMed] [Google Scholar]
- Peng X., Jonas J., Silva J. L. High-pressure NMR study of the dissociation of Arc repressor. Biochemistry. 1994 Jul 12;33(27):8323–8329. doi: 10.1021/bi00193a020. [DOI] [PubMed] [Google Scholar]
- Plaxco K. W., Millett I. S., Segel D. J., Doniach S., Baker D. Chain collapse can occur concomitantly with the rate-limiting step in protein folding. Nat Struct Biol. 1999 Jun;6(6):554–556. doi: 10.1038/9329. [DOI] [PubMed] [Google Scholar]
- Segel D. J., Eliezer D., Uversky V., Fink A. L., Hodgson K. O., Doniach S. Transient dimer in the refolding kinetics of cytochrome c characterized by small-angle X-ray scattering. Biochemistry. 1999 Nov 16;38(46):15352–15359. doi: 10.1021/bi991337k. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Kihara H., Kotova N. V., Kimura K., Amemiya Y., Wakabayashi K., Serdyuk I. N., Timchenko A. A., Chiba K., Nikaido K. Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol. 1996 Oct 4;262(4):559–574. doi: 10.1006/jmbi.1996.0535. [DOI] [PubMed] [Google Scholar]
- Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K., Gerring S. L. Effects of denaturants at low concentrations on the reversible denaturation of staphylococcal nuclease. Arch Biochem Biophys. 1989 Jul;272(1):103–113. doi: 10.1016/0003-9861(89)90200-2. [DOI] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
- Shortle D. Staphylococcal nuclease: a showcase of m-value effects. Adv Protein Chem. 1995;46:217–247. doi: 10.1016/s0065-3233(08)60336-8. [DOI] [PubMed] [Google Scholar]
- Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
- Vidugiris G. J., Markley J. L., Royer C. A. Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry. 1995 Apr 18;34(15):4909–4912. doi: 10.1021/bi00015a001. [DOI] [PubMed] [Google Scholar]
- Vidugiris G. J., Truckses D. M., Markley J. L., Royer C. A. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants. Biochemistry. 1996 Mar 26;35(12):3857–3864. doi: 10.1021/bi952012g. [DOI] [PubMed] [Google Scholar]
- Walkenhorst W. F., Green S. M., Roder H. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease. Biochemistry. 1997 May 13;36(19):5795–5805. doi: 10.1021/bi9700476. [DOI] [PubMed] [Google Scholar]
