Abstract
High concentrations of free Zn2+ ions are found in certain glutamatergic synaptic vesicles in the mammalian brain. These terminals can be visualized histochemically with quinoline sulfonamide compounds that form fluorescent complexes with Zn2+. The present study was undertaken to examine the interaction of the water-soluble quinoline sulfonamide probe, Zinquin (2-methyl-8-(toluene-p-sulfonamido)-6-quinolyloxyacetic acid) with the complex heterogeneous cellular environment. Experiments on rat hippocampal and neocortical slices gave indications that Zinquin in its free acid form was able to diffuse across the plasma and synaptic vesicle membranes. Further experiments were undertaken on unilamellar liposomes to study the interaction of Zinquin and its metal complexes in membranes. These experiments confirmed that Zinquin is able to diffuse across lipid bilayers. Steady-state and time-resolved fluorimetric studies showed that Zinquin in aqueous solution mainly forms a 1:2 (metal:ligand) complex with small amounts of a 1:1 complex. Formation of the 1:1 complex was favored by the presence of lipid, suggesting that it partitions into membranes. Evidence is presented that Zinquin can act as a Zn(2+)-ionophore, exchanging Zn2+ for two protons. The presence of a pH gradient across vesicles traps the Zn(2+)-probe complex within the vesicles. Zinquin is useful as a qualitative probe for detecting the presence of vesicular Zn2+; however, its tendency to partition into membranes and to serve as an ionophore should be borne in mind.
Full Text
The Full Text of this article is available as a PDF (259.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
- Atar D., Backx P. H., Appel M. M., Gao W. D., Marban E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem. 1995 Feb 10;270(6):2473–2477. doi: 10.1074/jbc.270.6.2473. [DOI] [PubMed] [Google Scholar]
- Berendji D., Kolb-Bachofen V., Meyer K. L., Grapenthin O., Weber H., Wahn V., Kröncke K. D. Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett. 1997 Mar 17;405(1):37–41. doi: 10.1016/s0014-5793(97)00150-6. [DOI] [PubMed] [Google Scholar]
- Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081–1085. doi: 10.1126/science.271.5252.1081. [DOI] [PubMed] [Google Scholar]
- Brand I. A., Kleineke J. Intracellular zinc movement and its effect on the carbohydrate metabolism of isolated rat hepatocytes. J Biol Chem. 1996 Jan 26;271(4):1941–1949. doi: 10.1074/jbc.271.4.1941. [DOI] [PubMed] [Google Scholar]
- Budde T., Minta A., White J. A., Kay A. R. Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience. 1997 Jul;79(2):347–358. doi: 10.1016/s0306-4522(96)00695-1. [DOI] [PubMed] [Google Scholar]
- Cheng C., Reynolds I. J. Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons. J Neurochem. 1998 Dec;71(6):2401–2410. doi: 10.1046/j.1471-4159.1998.71062401.x. [DOI] [PubMed] [Google Scholar]
- Cole T. B., Wenzel H. J., Kafer K. E., Schwartzkroin P. A., Palmiter R. D. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1716–1721. doi: 10.1073/pnas.96.4.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danscher G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry. 1981;71(1):1–16. doi: 10.1007/BF00592566. [DOI] [PubMed] [Google Scholar]
- Frederickson C. J., Kasarskis E. J., Ringo D., Frederickson R. E. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods. 1987 Jun;20(2):91–103. doi: 10.1016/0165-0270(87)90042-2. [DOI] [PubMed] [Google Scholar]
- Frederickson C. J. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Huang C. Y. Determination of binding stoichiometry by the continuous variation method: the Job plot. Methods Enzymol. 1982;87:509–525. doi: 10.1016/s0076-6879(82)87029-8. [DOI] [PubMed] [Google Scholar]
- Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasir M. S., Fahrni C. J., Suhy D. A., Kolodsick K. J., Singer C. P., O'Halloran T. V. The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Biol Inorg Chem. 1999 Dec;4(6):775–783. doi: 10.1007/s007750050350. [DOI] [PubMed] [Google Scholar]
- Peters A., Palay S. L. The morphology of synapses. J Neurocytol. 1996 Dec;25(12):687–700. doi: 10.1007/BF02284835. [DOI] [PubMed] [Google Scholar]
- Qian W. J., Aspinwall C. A., Battiste M. A., Kennedy R. T. Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. Anal Chem. 2000 Feb 15;72(4):711–717. doi: 10.1021/ac991085t. [DOI] [PubMed] [Google Scholar]
- Sensi S. L., Canzoniero L. M., Yu S. P., Ying H. S., Koh J. Y., Kerchner G. A., Choi D. W. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci. 1997 Dec 15;17(24):9554–9564. doi: 10.1523/JNEUROSCI.17-24-09554.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snitsarev V. A., McNulty T. J., Taylor C. W. Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys J. 1996 Aug;71(2):1048–1056. doi: 10.1016/S0006-3495(96)79305-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
- Walter A., Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–264. doi: 10.1007/BF01870573. [DOI] [PubMed] [Google Scholar]
- Wenzel H. J., Cole T. B., Born D. E., Schwartzkroin P. A., Palmiter R. D. Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12676–12681. doi: 10.1073/pnas.94.23.12676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalewski P. D., Forbes I. J., Betts W. H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J. 1993 Dec 1;296(Pt 2):403–408. doi: 10.1042/bj2960403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalewski P. D., Forbes I. J., Seamark R. F., Borlinghaus R., Betts W. H., Lincoln S. F., Ward A. D. Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chem Biol. 1994 Nov;1(3):153–161. doi: 10.1016/1074-5521(94)90005-1. [DOI] [PubMed] [Google Scholar]