Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1547–1556. doi: 10.1016/S0006-3495(01)76127-9

Optical and acoustical dynamics of microbubble contrast agents inside neutrophils.

P A Dayton 1, J E Chomas 1, A F Lum 1, J S Allen 1, J R Lindner 1, S I Simon 1, K W Ferrara 1
PMCID: PMC1301346  PMID: 11222315

Abstract

Acoustically active microbubbles are used for contrast-enhanced ultrasound assessment of organ perfusion. In regions of inflammation, contrast agents are captured and phagocytosed by activated neutrophils adherent to the venular wall. Using direct optical observation with a high-speed camera and acoustical interrogation of individual bubbles and cells, we assessed the physical and acoustical responses of both phagocytosed and free microbubbles. Optical analysis of bubble radial oscillations during insonation demonstrated that phagocytosed microbubbles experience viscous damping within the cytoplasm and yet remain acoustically active and capable of large volumetric oscillations during an acoustic pulse. Fitting a modified version of the Rayleigh-Plesset equation that describes mechanical properties of thin shells to optical radius-time data of oscillating bubbles provided estimates of the apparent viscosity of the intracellular medium. Phagocytosed microbubbles experienced a viscous damping approximately sevenfold greater than free microbubbles. Acoustical comparison between free and phagocytosed microbubbles indicated that phagocytosed microbubbles produce an echo with a higher mean frequency than free microbubbles in response to a rarefaction-first single-cycle pulse. Moreover, this frequency increase is predicted using the modified Rayleigh-Plesset equation. We conclude that contrast-enhanced ultrasound can detect distinct acoustic signals from microbubbles inside of neutrophils and may provide a unique tool to identify activated neutrophils at sites of inflammation.

Full Text

The Full Text of this article is available as a PDF (172.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
  2. Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gainey M. A., Siegel J. A., Smergel E. M., Jara B. J. Indium-111-labeled white blood cells: dosimetry in children. J Nucl Med. 1988 May;29(5):689–694. [PubMed] [Google Scholar]
  4. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res. 1996 Oct;32(4):733–742. [PubMed] [Google Scholar]
  5. Lindner J. R., Coggins M. P., Kaul S., Klibanov A. L., Brandenburger G. H., Ley K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation. 2000 Feb 15;101(6):668–675. doi: 10.1161/01.cir.101.6.668. [DOI] [PubMed] [Google Scholar]
  6. Lindner J. R., Dayton P. A., Coggins M. P., Ley K., Song J., Ferrara K., Kaul S. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation. 2000 Aug 1;102(5):531–538. doi: 10.1161/01.cir.102.5.531. [DOI] [PubMed] [Google Scholar]
  7. Needham D., Hochmuth R. M. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng. 1990 Aug;112(3):269–276. doi: 10.1115/1.2891184. [DOI] [PubMed] [Google Scholar]
  8. Roddie M. E., Peters A. M., Danpure H. J., Osman S., Henderson B. L., Lavender J. P., Carroll M. J., Neirinckx R. D., Kelly J. D. Inflammation: imaging with Tc-99m HMPAO-labeled leukocytes. Radiology. 1988 Mar;166(3):767–772. doi: 10.1148/radiology.166.3.3340775. [DOI] [PubMed] [Google Scholar]
  9. Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Simon S. I., Schmid-Schönbein G. W. Biophysical aspects of microsphere engulfment by human neutrophils. Biophys J. 1988 Feb;53(2):163–173. doi: 10.1016/S0006-3495(88)83078-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sung K. L., Dong C., Schmid-Schönbein G. W., Chien S., Skalak R. Leukocyte relaxation properties. Biophys J. 1988 Aug;54(2):331–336. doi: 10.1016/S0006-3495(88)82963-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thakur M. L., Lavender J. P., Arnot R. N., Silvester D. J., Segal A. W. Indium-111-labeled autologous leukocytes in man. J Nucl Med. 1977 Oct;18(10):1014–1021. [PubMed] [Google Scholar]
  13. Tsai M. A., Frank R. S., Waugh R. E. Passive mechanical behavior of human neutrophils: power-law fluid. Biophys J. 1993 Nov;65(5):2078–2088. doi: 10.1016/S0006-3495(93)81238-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Valberg P. A., Albertini D. F. Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol. 1985 Jul;101(1):130–140. doi: 10.1083/jcb.101.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wei K., Kaul S. Recent advances in myocardial contrast echocardiography. Curr Opin Cardiol. 1997 Nov;12(6):539–546. doi: 10.1097/00001573-199711000-00007. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES