Abstract
The birefringence and linear dichroism of anisotropic thin films such as proteolipid membranes are related to molecular properties such as polarizability, shape, and orientation. Coupled plasmon-waveguide resonance (CPWR) spectroscopy is shown in the present work to provide a convenient means of evaluating these parameters in a single lipid bilayer. This is illustrated by using 1-10 mol % of an acyl chain chromophore-labeled phosphatidylcholine (PC) incorporated into a solid-supported PC bilayer deposited onto a hydrated silica surface. CPWR measurements were made of refractive index and extinction coefficient anisotropies with two exciting light wavelengths, one of which is absorbed by the chromophore and one of which is not. These results were used to calculate longitudinal and transverse molecular polarizabilities, the orientational order parameter and average angle between the longitudinal axis of the lipid molecule and the membrane normal, and the molecular shape factors of the lipid molecules. The values thereby obtained are in excellent agreement with parameters determined by other techniques, and provide a powerful tool for analyzing lipid-protein, protein-protein, and protein-ligand interactions in proteolipid films.
Full Text
The Full Text of this article is available as a PDF (151.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
- Brown M. F. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994 Sep 6;73(1-2):159–180. doi: 10.1016/0009-3084(94)90180-5. [DOI] [PubMed] [Google Scholar]
- Büldt G., Gally H. U., Seelig A., Seelig J., Zaccai G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature. 1978 Jan 12;271(5641):182–184. doi: 10.1038/271182a0. [DOI] [PubMed] [Google Scholar]
- Cuypers P. A., Corsel J. W., Janssen M. P., Kop J. M., Hermens W. T., Hemker H. C. The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry. J Biol Chem. 1983 Feb 25;258(4):2426–2431. [PubMed] [Google Scholar]
- Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232. doi: 10.1146/annurev.biochem.66.1.199. [DOI] [PubMed] [Google Scholar]
- Engelman D. M. Lipid bilayer structure in the membrane of Mycoplasma laidlawii. J Mol Biol. 1971 May 28;58(1):153–165. doi: 10.1016/0022-2836(71)90238-5. [DOI] [PubMed] [Google Scholar]
- Johansson L. B., Lindblom G. Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Q Rev Biophys. 1980 Feb;13(1):63–118. doi: 10.1017/s0033583500000317. [DOI] [PubMed] [Google Scholar]
- MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980 Feb;29(2):237–245. doi: 10.1016/S0006-3495(80)85128-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagle J. F., Tristram-Nagle S. Lipid bilayer structure. Curr Opin Struct Biol. 2000 Aug;10(4):474–480. doi: 10.1016/s0959-440x(00)00117-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamon Z., Brown M. F., Tollin G. Plasmon resonance spectroscopy: probing molecular interactions within membranes. Trends Biochem Sci. 1999 Jun;24(6):213–219. doi: 10.1016/s0968-0004(99)01394-8. [DOI] [PubMed] [Google Scholar]
- Salamon Z., Cowell S., Varga E., Yamamura H. I., Hruby V. J., Tollin G. Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions. Biophys J. 2000 Nov;79(5):2463–2474. doi: 10.1016/S0006-3495(00)76489-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamon Z., Huang D., Cramer W. A., Tollin G. Coupled plasmon-waveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes. Biophys J. 1998 Oct;75(4):1874–1885. doi: 10.1016/S0006-3495(98)77628-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamon Z., Lindblom G., Rilfors L., Linde K., Tollin G. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies. Biophys J. 2000 Mar;78(3):1400–1412. doi: 10.1016/S0006-3495(00)76693-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamon Z., Macleod H. A., Tollin G. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J. 1997 Nov;73(5):2791–2797. doi: 10.1016/S0006-3495(97)78308-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamon Z., Macleod H. A., Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochim Biophys Acta. 1997 Sep 8;1331(2):117–129. doi: 10.1016/s0304-4157(97)00004-x. [DOI] [PubMed] [Google Scholar]
- Salamon Z., Wang Y., Brown M. F., Macleod H. A., Tollin G. Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry. 1994 Nov 22;33(46):13706–13711. doi: 10.1021/bi00250a022. [DOI] [PubMed] [Google Scholar]
- Salamon Z., Wang Y., Soulages J. L., Brown M. F., Tollin G. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Biophys J. 1996 Jul;71(1):283–294. doi: 10.1016/S0006-3495(96)79224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shipley G. G. Bilayers and nonbilayers: structure, forces and protein crystallization. Curr Opin Struct Biol. 2000 Aug;10(4):471–473. doi: 10.1016/s0959-440x(00)00116-0. [DOI] [PubMed] [Google Scholar]
- Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
- Zakharov S. D., Lindeberg M., Griko Y., Salamon Z., Tollin G., Prendergast F. G., Cramer W. A. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4282–4287. doi: 10.1073/pnas.95.8.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
