Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1659–1669. doi: 10.1016/S0006-3495(01)76138-3

Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel.

M Cui 1, J Shen 1, J M Briggs 1, X Luo 1, X Tan 1, H Jiang 1, K Chen 1, R Ji 1
PMCID: PMC1301357  PMID: 11259281

Abstract

The association of the scorpion toxin Lq2 and a potassium ion (K(+)) channel has been studied using the Brownian dynamics (BD) simulation method. All of the 22 available structures of Lq2 in the Brookhaven Protein Data Bank (PDB) determined by NMR were considered during the simulation, which indicated that the conformation of Lq2 affects the binding between the two proteins significantly. Among the 22 structures of Lq2, only 4 structures dock in the binding site of the K(+) channel with a high probability and favorable electrostatic interactions. From the 4 candidates of the Lq2-K(+) channel binding models, we identified a good three-dimensional model of Lq2-K(+) channel complex through triplet contact analysis, electrostatic interaction energy estimation by BD simulation and structural refinement by molecular mechanics. Lq2 locates around the extracellular mouth of the K(+) channel and contacts the K(+) channel using its beta-sheet rather than its alpha-helix. Lys27, a conserved amino acid in the scorpion toxins, plugs the pore of the K(+) channel and forms three hydrogen bonds with the conserved residues Tyr78(A-C) and two hydrophobic contacts with Gly79 of the K(+) channel. In addition, eight hydrogen-bonds are formed between residues Arg25, Cys28, Lys31, Arg34 and Tyr36 of Lq2 and residues Pro55, Tyr78, Gly79, Asp80, and Tyr82 of K(+) channel. Many of them are formed by side chains of residues of Lq2 and backbone atoms of the K(+) channel. Thirteen hydrophobic contacts exist between residues Met29, Asn30, Lys31 and Tyr36 of Lq2 and residues Pro55, Ala58, Gly79, Asp80 and Tyr82 of the K(+) channel. These favorable interactions stabilize the association between the two proteins. These observations are in good agreement with the experimental results and can explain the binding phenomena between scorpion toxins and K(+) channels at the level of molecular structure. The consistency between the BD simulation and the experimental data indicates that our three-dimensional model of Lq2-K(+) channel complex is reasonable and can be used in further biological studies such as rational design of blocking agents of K(+) channels and mutagenesis in both toxins and K(+) channels.

Full Text

The Full Text of this article is available as a PDF (572.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Catterall W. A. Structure and function of voltage-sensitive ion channels. Science. 1988 Oct 7;242(4875):50–61. doi: 10.1126/science.2459775. [DOI] [PubMed] [Google Scholar]
  3. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  4. Escobar L., Root M. J., MacKinnon R. Influence of protein surface charge on the bimolecular kinetics of a potassium channel peptide inhibitor. Biochemistry. 1993 Jul 13;32(27):6982–6987. doi: 10.1021/bi00078a024. [DOI] [PubMed] [Google Scholar]
  5. Gabdoulline R. R., Wade R. C. Brownian dynamics simulation of protein-protein diffusional encounter. Methods. 1998 Mar;14(3):329–341. doi: 10.1006/meth.1998.0588. [DOI] [PubMed] [Google Scholar]
  6. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  7. Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
  8. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaczorowski G. J., Garcia M. L. Pharmacology of voltage-gated and calcium-activated potassium channels. Curr Opin Chem Biol. 1999 Aug;3(4):448–458. doi: 10.1016/S1367-5931(99)80066-0. [DOI] [PubMed] [Google Scholar]
  10. Lu Z., MacKinnon R. Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom. Biochemistry. 1997 Jun 10;36(23):6936–6940. doi: 10.1021/bi9702849. [DOI] [PubMed] [Google Scholar]
  11. Lucchesi K., Ravindran A., Young H., Moczydlowski E. Analysis of the blocking activity of charybdotoxin homologs and iodinated derivatives against Ca2+-activated K+ channels. J Membr Biol. 1989 Aug;109(3):269–281. doi: 10.1007/BF01870284. [DOI] [PubMed] [Google Scholar]
  12. MacKinnon R., Cohen S. L., Kuo A., Lee A., Chait B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998 Apr 3;280(5360):106–109. doi: 10.1126/science.280.5360.106. [DOI] [PubMed] [Google Scholar]
  13. MacKinnon R., Heginbotham L., Abramson T. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron. 1990 Dec;5(6):767–771. doi: 10.1016/0896-6273(90)90335-d. [DOI] [PubMed] [Google Scholar]
  14. MacKinnon R., Miller C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science. 1989 Sep 22;245(4924):1382–1385. doi: 10.1126/science.2476850. [DOI] [PubMed] [Google Scholar]
  15. Matthew J. B. Electrostatic effects in proteins. Annu Rev Biophys Biophys Chem. 1985;14:387–417. doi: 10.1146/annurev.bb.14.060185.002131. [DOI] [PubMed] [Google Scholar]
  16. Matthew J. B., Gurd F. R. Calculation of electrostatic interactions in proteins. Methods Enzymol. 1986;130:413–436. doi: 10.1016/0076-6879(86)30019-3. [DOI] [PubMed] [Google Scholar]
  17. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  18. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995 Jul;15(1):5–10. doi: 10.1016/0896-6273(95)90057-8. [DOI] [PubMed] [Google Scholar]
  19. Mintz I. M., Adams M. E., Bean B. P. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992 Jul;9(1):85–95. doi: 10.1016/0896-6273(92)90223-z. [DOI] [PubMed] [Google Scholar]
  20. Naranjo D., Miller C. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron. 1996 Jan;16(1):123–130. doi: 10.1016/s0896-6273(00)80029-x. [DOI] [PubMed] [Google Scholar]
  21. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  22. Northrup S. H., Thomasson K. A., Miller C. M., Barker P. D., Eltis L. D., Guillemette J. G., Inglis S. C., Mauk A. G. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Biochemistry. 1993 Jul 6;32(26):6613–6623. doi: 10.1021/bi00077a014. [DOI] [PubMed] [Google Scholar]
  23. Ouporov I. V., Knull H. R., Thomasson K. A. Brownian dynamics simulations of interactions between aldolase and G- or F-actin. Biophys J. 1999 Jan;76(1 Pt 1):17–27. doi: 10.1016/S0006-3495(99)77174-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Park C. S., Miller C. Mapping function to structure in a channel-blocking peptide: electrostatic mutants of charybdotoxin. Biochemistry. 1992 Sep 1;31(34):7749–7755. doi: 10.1021/bi00149a002. [DOI] [PubMed] [Google Scholar]
  25. Pearson D. C., Jr, Gross E. L. Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys J. 1998 Dec;75(6):2698–2711. doi: 10.1016/S0006-3495(98)77714-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ranganathan R., Lewis J. H., MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996 Jan;16(1):131–139. doi: 10.1016/s0896-6273(00)80030-6. [DOI] [PubMed] [Google Scholar]
  27. Renisio J. G., Lu Z., Blanc E., Jin W., Lewis J. H., Bornet O., Darbon H. Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Proteins. 1999 Mar 1;34(4):417–426. doi: 10.1002/(sici)1097-0134(19990301)34:4<417::aid-prot1>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  28. Stampe P., Kolmakova-Partensky L., Miller C. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry. 1994 Jan 18;33(2):443–450. doi: 10.1021/bi00168a008. [DOI] [PubMed] [Google Scholar]
  29. Wallace A. C., Laskowski R. A., Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  30. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES