Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1703–1711. doi: 10.1016/s0006-3495(01)76141-3

Theory of tunable pH-sensitive vesicles of anionic and cationic lipids or anionic and neutral lipids.

X Li 1, M Schick 1
PMCID: PMC1301360  PMID: 11259284

Abstract

The design of vesicles that become unstable at an easily tuned value of pH is of great interest for targeted drug delivery. We present a microscopic theory for two forms of such vesicles. A model of lipids introduced by us previously is applied to a system of ionizable anionic lipid and permanently charged cationic lipid. We calculate the pH at which the lamellar phase becomes unstable with respect to an inverted hexagonal one, a value that depends continuously on the system composition. Identifying this instability with that displayed by unilamellar vesicles undergoing fusion, we obtain very good agreement with the recent experimental data of Hafez, Ansell, and Cullis, (2000, Biophys. J. 79:1438-1446) on the pH at which fusion occurs versus vesicle composition. We explicate the mechanism in terms of the role of the counterions. This understanding suggests that a system of a neutral, nonlamellar-forming lipid stabilized by an anionic lipid would serve equally well for preparing tunable, pH-sensitive vesicles. Our calculations confirm this. Further, we show that both forms of vesicle have the desirable feature of exhibiting a regime in which the pH at instability is a rapidly varying function of the vesicle composition.

Full Text

The Full Text of this article is available as a PDF (102.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezrukov S. M., Rand R. P., Vodyanoy I., Parsegian V. A. Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss. 1998;(111):173–246. doi: 10.1039/a806579i. [DOI] [PubMed] [Google Scholar]
  2. Collins D., Maxfield F., Huang L. Immunoliposomes with different acid sensitivities as probes for the cellular endocytic pathway. Biochim Biophys Acta. 1989 Dec 11;987(1):47–55. doi: 10.1016/0005-2736(89)90453-7. [DOI] [PubMed] [Google Scholar]
  3. Connor J., Huang L. Efficient cytoplasmic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J Cell Biol. 1985 Aug;101(2):582–589. doi: 10.1083/jcb.101.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cullis P. R., de Kruijff B. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophys Acta. 1978 Oct 19;513(1):31–42. doi: 10.1016/0005-2736(78)90109-8. [DOI] [PubMed] [Google Scholar]
  5. Ellens H., Bentz J., Szoka F. C. Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature. Biochemistry. 1986 Jan 28;25(2):285–294. doi: 10.1021/bi00350a001. [DOI] [PubMed] [Google Scholar]
  6. Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
  7. Hafez I. M., Ansell S., Cullis P. R. Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids. Biophys J. 2000 Sep;79(3):1438–1446. doi: 10.1016/S0006-3495(00)76395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hafez I. M., Cullis P. R. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. Biochim Biophys Acta. 2000 Jan 15;1463(1):107–114. doi: 10.1016/s0005-2736(99)00186-8. [DOI] [PubMed] [Google Scholar]
  9. Hope M. J., Cullis P. R. Effects of divalent cations and pH on phosphatidylserine model membranes: a 31P NMR study. Biochem Biophys Res Commun. 1980 Feb 12;92(3):846–852. doi: 10.1016/0006-291x(80)90780-9. [DOI] [PubMed] [Google Scholar]
  10. Hope M. J., Walker D. C., Cullis P. R. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochem Biophys Res Commun. 1983 Jan 14;110(1):15–22. doi: 10.1016/0006-291x(83)91253-6. [DOI] [PubMed] [Google Scholar]
  11. Jizomoto H., Kanaoka E., Hirano K. pH-sensitive liposomes composed of tocopherol hemisuccinate and of phosphatidylethanolamine including tocopherol hemisuccinate. Biochim Biophys Acta. 1994 Aug 4;1213(3):343–348. [PubMed] [Google Scholar]
  12. Kozlov M. M., Leikin S., Rand R. P. Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine. Biophys J. 1994 Oct;67(4):1603–1611. doi: 10.1016/S0006-3495(94)80633-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lai M. Z., Vail W. J., Szoka F. C. Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry. 1985 Mar 26;24(7):1654–1661. doi: 10.1021/bi00328a013. [DOI] [PubMed] [Google Scholar]
  14. Li X., Schick M. Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine. Biophys J. 2000 Jan;78(1):34–46. doi: 10.1016/s0006-3495(00)76570-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett. 1994 Apr 18;72(16):2660–2663. doi: 10.1103/PhysRevLett.72.2660. [DOI] [PubMed] [Google Scholar]
  16. Paulsen M. D., Anderson C. F., Record M. T., Jr Counterion exchange reactions on DNA: Monte Carlo and Poisson-Boltzmann analysis. Biopolymers. 1988 Aug;27(8):1249–1265. doi: 10.1002/bip.360270806. [DOI] [PubMed] [Google Scholar]
  17. Rand R. P., Fuller N. L. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys J. 1994 Jun;66(6):2127–2138. doi: 10.1016/S0006-3495(94)81008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  19. Straubinger R. M., Düzgünes N., Papahadjopoulos D. pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett. 1985 Jan 1;179(1):148–154. doi: 10.1016/0014-5793(85)80210-6. [DOI] [PubMed] [Google Scholar]
  20. Straubinger R. M. pH-sensitive liposomes for delivery of macromolecules into cytoplasm of cultured cells. Methods Enzymol. 1993;221:361–376. doi: 10.1016/0076-6879(93)21030-c. [DOI] [PubMed] [Google Scholar]
  21. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  22. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  23. Wang C. Y., Huang L. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7851–7855. doi: 10.1073/pnas.84.22.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yatvin M. B., Kreutz W., Horwitz B. A., Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science. 1980 Dec 12;210(4475):1253–1255. doi: 10.1126/science.7434025. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES