Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1712–1721. doi: 10.1016/S0006-3495(01)76142-5

Predicted profiles of ion concentrations in olfactory cilia in the steady state.

B Lindemann 1
PMCID: PMC1301361  PMID: 11259285

Abstract

The role of ciliary geometry for transduction events was explored by numerical simulation. The changes in intraciliary ion concentrations, suspected to occur during transduction, could thus be estimated. The case of a single excised cilium, having a uniform distribution of membrane channels, voltage clamped to -80 mV, was especially investigated. The axial profile of membrane voltage was that of a leaky cable. The Ca(2+) concentration profile tended to show a maximum in proximal segments, due to a preponderance of Ca(2+) inflow over Ca(2+) export at those locations. The local increase in Ca(2+) concentration activated Cl(-) channels. The resulting current caused a local drop in Cl(-) concentration, especially at the tip of the cilium and in distal segments, accompanied by a drop in ciliary K(+) concentration. In consequence, the membrane Cl(-) current was low in distal segments but stronger in proximal segments, where resupply was sufficient. The model predicts that the Cl(-) depletion will codetermine the time course of the receptor potential or current and the ciliary stimulus-response curve. In conclusion, when modeling with transduction elements presently known to participate, the ciliary geometry has large effects on ion distributions and transduction currents because ciliary ion transport is limited by axial electrodiffusion.

Full Text

The Full Text of this article is available as a PDF (165.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arstila A., Wersäll J. The ultrastructure of the olfactory epithelium of the guinea pig. Acta Otolaryngol. 1967 Sep;64(3):187–204. doi: 10.3109/00016486709139106. [DOI] [PubMed] [Google Scholar]
  2. Chen T. Y., Yau K. W. Direct modulation by Ca(2+)-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature. 1994 Apr 7;368(6471):545–548. doi: 10.1038/368545a0. [DOI] [PubMed] [Google Scholar]
  3. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  4. DiPolo R., Beaugé L. The calcium pump and sodium-calcium exchange in squid axons. Annu Rev Physiol. 1983;45:313–324. doi: 10.1146/annurev.ph.45.030183.001525. [DOI] [PubMed] [Google Scholar]
  5. Dzeja C., Hagen V., Kaupp U. B., Frings S. Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J. 1999 Jan 4;18(1):131–144. doi: 10.1093/emboj/18.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ehrlich I., Lohrke S., Friauf E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl- regulation. J Physiol. 1999 Oct 1;520(Pt 1):121–137. doi: 10.1111/j.1469-7793.1999.00121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Firestein S., Werblin F. Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science. 1989 Apr 7;244(4900):79–82. doi: 10.1126/science.2704991. [DOI] [PubMed] [Google Scholar]
  8. Frings S., Hackos D. H., Dzeja C., Ohyama T., Hagen V., Kaupp U. B., Korenbrot J. I. Determination of fractional calcium ion current in cyclic nucleotide-gated channels. Methods Enzymol. 2000;315:797–817. doi: 10.1016/s0076-6879(00)15883-5. [DOI] [PubMed] [Google Scholar]
  9. Frings S., Reuter D., Kleene S. J. Neuronal Ca2+ -activated Cl- channels--homing in on an elusive channel species. Prog Neurobiol. 2000 Feb;60(3):247–289. doi: 10.1016/s0301-0082(99)00027-1. [DOI] [PubMed] [Google Scholar]
  10. Kern R. C., Kerr T. P., Getchell T. V. Ultrastructural localization of Na+/K(+)-ATPase in rodent olfactory epithelium. Brain Res. 1991 Apr 12;546(1):8–17. doi: 10.1016/0006-8993(91)91153-r. [DOI] [PubMed] [Google Scholar]
  11. Kleene S. J., Gesteland R. C., Bryant S. H. An electrophysiological survey of frog olfactory cilia. J Exp Biol. 1994 Oct;195:307–328. doi: 10.1242/jeb.195.1.307. [DOI] [PubMed] [Google Scholar]
  12. Kleene S. J., Gesteland R. C. Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci. 1991 Nov;11(11):3624–3629. doi: 10.1523/JNEUROSCI.11-11-03624.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleene S. J., Gesteland R. C. Transmembrane currents in frog olfactory cilia. J Membr Biol. 1991 Feb;120(1):75–81. doi: 10.1007/BF01868593. [DOI] [PubMed] [Google Scholar]
  14. Kleene S. J. Inhibition of olfactory cyclic nucleotide-activated current by calmodulin antagonists. Br J Pharmacol. 1994 Feb;111(2):469–472. doi: 10.1111/j.1476-5381.1994.tb14760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleene S. J. Origin of the chloride current in olfactory transduction. Neuron. 1993 Jul;11(1):123–132. doi: 10.1016/0896-6273(93)90276-w. [DOI] [PubMed] [Google Scholar]
  16. Larsson H. P., Kleene S. J., Lecar H. Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia. Biophys J. 1997 Mar;72(3):1193–1203. doi: 10.1016/S0006-3495(97)78767-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leinders-Zufall T., Greer C. A., Shepherd G. M., Zufall F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J Neurosci. 1998 Aug 1;18(15):5630–5639. doi: 10.1523/JNEUROSCI.18-15-05630.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leinders-Zufall T., Greer C. A., Shepherd G. M., Zufall F. Visualizing odor detection in olfactory cilia by calcium imaging. Ann N Y Acad Sci. 1998 Nov 30;855:205–207. doi: 10.1111/j.1749-6632.1998.tb10567.x. [DOI] [PubMed] [Google Scholar]
  19. Leinders-Zufall T., Rand M. N., Shepherd G. M., Greer C. A., Zufall F. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci. 1997 Jun 1;17(11):4136–4148. doi: 10.1523/JNEUROSCI.17-11-04136.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lidow M. S., Menco B. P. Observations on axonemes and membranes of olfactory and respiratory cilia in frogs and rats using tannic acid-supplemented fixation and photographic rotation. J Ultrastruct Res. 1984 Jan;86(1):18–30. doi: 10.1016/s0022-5320(84)90092-3. [DOI] [PubMed] [Google Scholar]
  21. Lo Y. H., Bradley T. M., Rhoads D. E. High-affinity Ca2+,Mg(2+)-ATPase in plasma membrane-rich preparations from olfactory epithelium of Atlantic salmon. Biochim Biophys Acta. 1994 Jun 22;1192(2):153–158. doi: 10.1016/0005-2736(94)90113-9. [DOI] [PubMed] [Google Scholar]
  22. Lowe G., Gold G. H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature. 1993 Nov 18;366(6452):283–286. doi: 10.1038/366283a0. [DOI] [PubMed] [Google Scholar]
  23. Lowe G., Gold G. H. The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J Physiol. 1991 Oct;442:147–168. doi: 10.1113/jphysiol.1991.sp018787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lumpkin E. A., Hudspeth A. J. Regulation of free Ca2+ concentration in hair-cell stereocilia. J Neurosci. 1998 Aug 15;18(16):6300–6318. doi: 10.1523/JNEUROSCI.18-16-06300.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsuzaki O., Bakin R. E., Cai X., Menco B. P., Ronnett G. V. Localization of the olfactory cyclic nucleotide-gated channel subunit 1 in normal, embryonic and regenerating olfactory epithelium. Neuroscience. 1999;94(1):131–140. doi: 10.1016/s0306-4522(99)00228-6. [DOI] [PubMed] [Google Scholar]
  26. Menco B. P., Birrell G. B., Fuller C. M., Ezeh P. I., Keeton D. A., Benos D. J. Ultrastructural localization of amiloride-sensitive sodium channels and Na+,K(+)-ATPase in the rat's olfactory epithelial surface. Chem Senses. 1998 Apr;23(2):137–149. doi: 10.1093/chemse/23.2.137. [DOI] [PubMed] [Google Scholar]
  27. Menco B. P., Bruch R. C., Dau B., Danho W. Ultrastructural localization of olfactory transduction components: the G protein subunit Golf alpha and type III adenylyl cyclase. Neuron. 1992 Mar;8(3):441–453. doi: 10.1016/0896-6273(92)90272-f. [DOI] [PubMed] [Google Scholar]
  28. Menco B. P. Ciliated and microvillous structures of rat olfactory and nasal respiratory epithelia. A study using ultra-rapid cryo-fixation followed by freeze-substitution or freeze-etching. Cell Tissue Res. 1984;235(2):225–241. doi: 10.1007/BF00217846. [DOI] [PubMed] [Google Scholar]
  29. Menco B. P. Ultrastructural aspects of olfactory signaling. Chem Senses. 1997 Jun;22(3):295–311. doi: 10.1093/chemse/22.3.295. [DOI] [PubMed] [Google Scholar]
  30. Menco B. P. Ultrastructural aspects of olfactory transduction and perireceptor events. Semin Cell Biol. 1994 Feb;5(1):11–24. doi: 10.1006/scel.1994.1003. [DOI] [PubMed] [Google Scholar]
  31. Mullins L. J. A mechanism for Na/Ca transport. J Gen Physiol. 1977 Dec;70(6):681–695. doi: 10.1085/jgp.70.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nakamura T., Gold G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 1987 Jan 29-Feb 4Nature. 325(6103):442–444. doi: 10.1038/325442a0. [DOI] [PubMed] [Google Scholar]
  33. Nygren A., Halter J. A. A general approach to modeling conduction and concentration dynamics in excitable cells of concentric cylindrical geometry. J Theor Biol. 1999 Aug 7;199(3):329–358. doi: 10.1006/jtbi.1999.0962. [DOI] [PubMed] [Google Scholar]
  34. Pongracz F., Firestein S., Shepherd G. M. Electrotonic structure of olfactory sensory neurons analyzed by intracellular and whole cell patch techniques. J Neurophysiol. 1991 Mar;65(3):747–758. doi: 10.1152/jn.1991.65.3.747. [DOI] [PubMed] [Google Scholar]
  35. Rasmusson R. L., Clark J. W., Giles W. R., Shibata E. F., Campbell D. L. A mathematical model of a bullfrog cardiac pacemaker cell. Am J Physiol. 1990 Aug;259(2 Pt 2):H352–H369. doi: 10.1152/ajpheart.1990.259.2.H352. [DOI] [PubMed] [Google Scholar]
  36. Reisert J., Matthews H. R. Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J Gen Physiol. 1998 Nov;112(5):529–535. doi: 10.1085/jgp.112.5.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reuter D., Zierold K., Schröder W. H., Frings S. A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci. 1998 Sep 1;18(17):6623–6630. doi: 10.1523/JNEUROSCI.18-17-06623.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schild D., Restrepo D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev. 1998 Apr;78(2):429–466. doi: 10.1152/physrev.1998.78.2.429. [DOI] [PubMed] [Google Scholar]
  39. Zufall F., Leinders-Zufall T., Greer C. A. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction. J Neurophysiol. 2000 Jan;83(1):501–512. doi: 10.1152/jn.2000.83.1.501. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES