Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1733–1743. doi: 10.1016/s0006-3495(01)76144-9

Particle diameter influences adhesion under flow.

V R Shinde Patil 1, C J Campbell 1, Y H Yun 1, S M Slack 1, D J Goetz 1
PMCID: PMC1301363  PMID: 11259287

Abstract

The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with the recombinant P-selectin glycoprotein ligand-1 construct 19.ek.Fc. We compared the adhesion of the 19.ek.Fc microspheres to P-selectin under in vitro flow conditions. We found that 1) at relatively high shear, the rate of attachment of the 19.ek.Fc microspheres decreased with increasing microsphere diameter whereas, at a lower shear, the rate of attachment was not affected by the microsphere diameter; 2) the shear stress required to set in motion a firmly adherent 19.ek.Fc microsphere decreased with increasing microsphere diameter; and 3) the rolling velocity of the 19.ek.Fc microspheres increased with increasing microsphere diameter. These results suggest that attachment, rolling, and firm adhesion are functions of particle diameter and provide experimental proof for theoretical models that indicate a role for cell diameter in adhesion.

Full Text

The Full Text of this article is available as a PDF (96.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  2. Brunk D. K., Goetz D. J., Hammer D. A. Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J. 1996 Nov;71(5):2902–2907. doi: 10.1016/S0006-3495(96)79487-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambers A. F., MacDonald I. C., Schmidt E. E., Koop S., Morris V. L., Khokha R., Groom A. C. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995 Dec;14(4):279–301. doi: 10.1007/BF00690599. [DOI] [PubMed] [Google Scholar]
  5. Chang K. C., Hammer D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys J. 1999 Mar;76(3):1280–1292. doi: 10.1016/S0006-3495(99)77291-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman G. B., Cokelet G. R. Flow resistance and drag forces due to multiple adherent leukocytes in postcapillary vessels. Biophys J. 1998 Jun;74(6):3292–3301. doi: 10.1016/S0006-3495(98)78036-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chien S. Rheology in the microcirculation in normal and low flow states. Adv Shock Res. 1982;8:71–80. [PubMed] [Google Scholar]
  8. Cozens-Roberts C., Quinn J. A., Lauffenberger D. A. Receptor-mediated adhesion phenomena. Model studies with the Radical-Flow Detachment Assay. Biophys J. 1990 Jul;58(1):107–125. doi: 10.1016/S0006-3495(90)82357-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crutchfield K. L., Shinde Patil V. R., Campbell C. J., Parkos C. A., Allport J. R., Goetz D. J. CD11b/CD18-coated microspheres attach to E-selectin under flow. J Leukoc Biol. 2000 Feb;67(2):196–205. doi: 10.1002/jlb.67.2.196. [DOI] [PubMed] [Google Scholar]
  10. Dong C., Cao J., Struble E. J., Lipowsky H. H. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng. 1999 May-Jun;27(3):298–312. doi: 10.1114/1.143. [DOI] [PubMed] [Google Scholar]
  11. Evans E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 1998;(111):1–16. doi: 10.1039/a809884k. [DOI] [PubMed] [Google Scholar]
  12. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fredrickson B. J., Dong J. F., McIntire L. V., López J. A. Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood. 1998 Nov 15;92(10):3684–3693. [PubMed] [Google Scholar]
  14. Frenette P. S., Johnson R. C., Hynes R. O., Wagner D. D. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7450–7454. doi: 10.1073/pnas.92.16.7450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giavazzi R. Cytokine-mediated tumor-endothelial cell interaction in metastasis. Curr Top Microbiol Immunol. 1996;213(Pt 2):13–30. doi: 10.1007/978-3-642-61109-4_2. [DOI] [PubMed] [Google Scholar]
  16. Goetz D. J., Brandley B. K., Hammer D. A. An E-selectin-IgG chimera supports sialylated moiety dependent adhesion of colon carcinoma cells under fluid flow. Ann Biomed Eng. 1996 Jan-Feb;24(1):87–98. doi: 10.1007/BF02770998. [DOI] [PubMed] [Google Scholar]
  17. Goetz D. J., Ding H., Atkinson W. J., Vachino G., Camphausen R. T., Cumming D. A., Luscinskas F. W. A human colon carcinoma cell line exhibits adhesive interactions with P-selectin under fluid flow via a PSGL-1-independent mechanism. Am J Pathol. 1996 Nov;149(5):1661–1673. [PMC free article] [PubMed] [Google Scholar]
  18. Goetz D. J., Greif D. M., Ding H., Camphausen R. T., Howes S., Comess K. M., Snapp K. R., Kansas G. S., Luscinskas F. W. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J Cell Biol. 1997 Apr 21;137(2):509–519. doi: 10.1083/jcb.137.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldsmith H. L., Turitto V. T. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report--Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost. 1986 Jun 30;55(3):415–435. [PubMed] [Google Scholar]
  20. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hammer D. A., Lauffenburger D. A. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J. 1987 Sep;52(3):475–487. doi: 10.1016/S0006-3495(87)83236-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. House S. D., Lipowsky H. H. In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat. Circ Res. 1988 Sep;63(3):658–668. doi: 10.1161/01.res.63.3.658. [DOI] [PubMed] [Google Scholar]
  23. Lawrence M. B., Bainton D. F., Springer T. A. Neutrophil tethering to and rolling on E-selectin are separable by requirement for L-selectin. Immunity. 1994 May;1(2):137–145. doi: 10.1016/1074-7613(94)90107-4. [DOI] [PubMed] [Google Scholar]
  24. Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
  25. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  26. Luscinskas F. W., Kansas G. S., Ding H., Pizcueta P., Schleiffenbaum B. E., Tedder T. F., Gimbrone M. A., Jr Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, beta 1-integrins, and beta 2-integrins. J Cell Biol. 1994 Jun;125(6):1417–1427. doi: 10.1083/jcb.125.6.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCarty O. J., Mousa S. A., Bray P. F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood. 2000 Sep 1;96(5):1789–1797. [PubMed] [Google Scholar]
  28. Melder R. J., Munn L. L., Yamada S., Ohkubo C., Jain R. K. Selectin- and integrin-mediated T-lymphocyte rolling and arrest on TNF-alpha-activated endothelium: augmentation by erythrocytes. Biophys J. 1995 Nov;69(5):2131–2138. doi: 10.1016/S0006-3495(95)80087-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Munn L. L., Melder R. J., Jain R. K. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies. Biophys J. 1994 Aug;67(2):889–895. doi: 10.1016/S0006-3495(94)80550-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Patel K. D., McEver R. P. Comparison of tethering and rolling of eosinophils and neutrophils through selectins and P-selectin glycoprotein ligand-1. J Immunol. 1997 Nov 1;159(9):4555–4565. [PubMed] [Google Scholar]
  31. Rodgers S. D., Camphausen R. T., Hammer D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys J. 2000 Aug;79(2):694–706. doi: 10.1016/S0006-3495(00)76328-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999 Jan 14;340(2):115–126. doi: 10.1056/NEJM199901143400207. [DOI] [PubMed] [Google Scholar]
  33. Sako D., Chang X. J., Barone K. M., Vachino G., White H. M., Shaw G., Veldman G. M., Bean K. M., Ahern T. J., Furie B. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993 Dec 17;75(6):1179–1186. doi: 10.1016/0092-8674(93)90327-m. [DOI] [PubMed] [Google Scholar]
  34. Sako D., Comess K. M., Barone K. M., Camphausen R. T., Cumming D. A., Shaw G. D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995 Oct 20;83(2):323–331. doi: 10.1016/0092-8674(95)90173-6. [DOI] [PubMed] [Google Scholar]
  35. Scherbarth S., Orr F. W. Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 1997 Sep 15;57(18):4105–4110. [PubMed] [Google Scholar]
  36. Schmid-Schoenbein G. W., Fung Y. C., Zweifach B. W. Vascular endothelium-leukocyte interaction; sticking shear force in venules. Circ Res. 1975 Jan;36(1):173–184. doi: 10.1161/01.res.36.1.173. [DOI] [PubMed] [Google Scholar]
  37. Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  39. Swift D. G., Posner R. G., Hammer D. A. Kinetics of adhesion of IgE-sensitized rat basophilic leukemia cells to surface-immobilized antigen in Couette flow. Biophys J. 1998 Nov;75(5):2597–2611. doi: 10.1016/S0006-3495(98)77705-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wattenbarger M. R., Graves D. J., Lauffenburger D. A. Specific adhesion of glycophorin liposomes to a lectin surface in shear flow. Biophys J. 1990 Apr;57(4):765–777. doi: 10.1016/S0006-3495(90)82597-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. von Andrian U. H., Hasslen S. R., Nelson R. D., Erlandsen S. L., Butcher E. C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell. 1995 Sep 22;82(6):989–999. doi: 10.1016/0092-8674(95)90278-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES