Abstract
Direct measurements of the interactions between antiparallel, oriented monolayers of the complete extracellular region of C-cadherin demonstrate that, rather than binding in a single unique orientation, the cadherins adhere in three distinct alignments. The strongest adhesion is observed when the opposing extracellular fragments are completely interdigitated. A second adhesive alignment forms when the interdigitated proteins separate by 70 +/- 10 A. A third complex forms at a bilayer separation commensurate with the approximate overlap of cadherin extracellular domains 1 and 2 (CEC1-2). The locations of the energy minima are independent of both the surface density of bound cadherin and the stiffness of the force transducer. Using surface element integration, we show that two flat surfaces that interact through an oscillatory potential will exhibit discrete minima at the same locations in the force profile measured between hemicylinders covered with identical materials. The measured interaction profiles, therefore, reflect the relative separations at which the antiparallel proteins adhere, and are unaffected by the curvature of the underlying substrate. The successive formation and rupture of multiple protein contacts during detachment can explain the observed sluggish unbinding of cadherin monolayers. Velocity-distance profiles, obtained by quantitative video analysis of the unbinding trajectory, exhibit three velocity regimes, the transitions between which coincide with the positions of the adhesive minima. These findings suggest that cadherins undergo multiple stage unbinding, which may function to impede adhesive failure under force.
Full Text
The Full Text of this article is available as a PDF (160.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharjee S, Elimelech M. Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate. J Colloid Interface Sci. 1997 Sep 15;193(2):273–285. doi: 10.1006/jcis.1997.5076. [DOI] [PubMed] [Google Scholar]
- Brieher W. M., Yap A. S., Gumbiner B. M. Lateral dimerization is required for the homophilic binding activity of C-cadherin. J Cell Biol. 1996 Oct;135(2):487–496. doi: 10.1083/jcb.135.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumbiner B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345–357. doi: 10.1016/s0092-8674(00)81279-9. [DOI] [PubMed] [Google Scholar]
- Helm C. A., Knoll W., Israelachvili J. N. Measurement of ligand-receptor interactions. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8169–8173. doi: 10.1073/pnas.88.18.8169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch A. W., Bozic D., Pertz O., Engel J. Homophilic adhesion by cadherins. Curr Opin Struct Biol. 1999 Apr;9(2):275–281. doi: 10.1016/S0959-440X(99)80038-4. [DOI] [PubMed] [Google Scholar]
- Leckband D. E., Schmitt F. J., Israelachvili J. N., Knoll W. Direct force measurements of specific and nonspecific protein interactions. Biochemistry. 1994 Apr 19;33(15):4611–4624. doi: 10.1021/bi00181a023. [DOI] [PubMed] [Google Scholar]
- Leckband D., Müller W., Schmitt F. J., Ringsdorf H. Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys J. 1995 Sep;69(3):1162–1169. doi: 10.1016/S0006-3495(95)79990-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
- Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
- Nagar B., Overduin M., Ikura M., Rini J. M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature. 1996 Mar 28;380(6572):360–364. doi: 10.1038/380360a0. [DOI] [PubMed] [Google Scholar]
- Nose A., Tsuji K., Takeichi M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell. 1990 Apr 6;61(1):147–155. doi: 10.1016/0092-8674(90)90222-z. [DOI] [PubMed] [Google Scholar]
- Ohnishi S., Murata M., Hato M. Correlation between surface morphology and surface forces of protein A adsorbed on mica. Biophys J. 1998 Jan;74(1):455–465. doi: 10.1016/S0006-3495(98)77803-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pertz O., Bozic D., Koch A. W., Fauser C., Brancaccio A., Engel J. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 1999 Apr 1;18(7):1738–1747. doi: 10.1093/emboj/18.7.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pokutta S., Herrenknecht K., Kemler R., Engel J. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem. 1994 Aug 1;223(3):1019–1026. doi: 10.1111/j.1432-1033.1994.tb19080.x. [DOI] [PubMed] [Google Scholar]
- Saterbak A., Lauffenburger D. A. Adhesion mediated by bonds in series. Biotechnol Prog. 1996 Sep-Oct;12(5):682–699. doi: 10.1021/bp960061u. [DOI] [PubMed] [Google Scholar]
- Seifert U. Rupture of multiple parallel molecular bonds under dynamic loading. Phys Rev Lett. 2000 Mar 20;84(12):2750–2753. doi: 10.1103/PhysRevLett.84.2750. [DOI] [PubMed] [Google Scholar]
- Shapiro L., Fannon A. M., Kwong P. D., Thompson A., Lehmann M. S., Grübel G., Legrand J. F., Als-Nielsen J., Colman D. R., Hendrickson W. A. Structural basis of cell-cell adhesion by cadherins. Nature. 1995 Mar 23;374(6520):327–337. doi: 10.1038/374327a0. [DOI] [PubMed] [Google Scholar]
- Sivasankar S., Brieher W., Lavrik N., Gumbiner B., Leckband D. Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11820–11824. doi: 10.1073/pnas.96.21.11820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991 Mar 22;251(5000):1451–1455. doi: 10.1126/science.2006419. [DOI] [PubMed] [Google Scholar]
- Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol. 1993 Oct;5(5):806–811. doi: 10.1016/0955-0674(93)90029-p. [DOI] [PubMed] [Google Scholar]
- Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol. 1995 Oct;7(5):619–627. doi: 10.1016/0955-0674(95)80102-2. [DOI] [PubMed] [Google Scholar]
- Tamura K., Shan W. S., Hendrickson W. A., Colman D. R., Shapiro L. Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron. 1998 Jun;20(6):1153–1163. doi: 10.1016/s0896-6273(00)80496-1. [DOI] [PubMed] [Google Scholar]
- Tomschy A., Fauser C., Landwehr R., Engel J. Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J. 1996 Jul 15;15(14):3507–3514. [PMC free article] [PubMed] [Google Scholar]
- Weis W. I. Cadherin structure: a revealing zipper. Structure. 1995 May 15;3(5):425–427. doi: 10.1016/s0969-2126(01)00174-5. [DOI] [PubMed] [Google Scholar]
- Yap A. S., Brieher W. M., Gumbiner B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol. 1997;13:119–146. doi: 10.1146/annurev.cellbio.13.1.119. [DOI] [PubMed] [Google Scholar]