Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1783–1790. doi: 10.1016/S0006-3495(01)76148-6

Cell volume kinetics of adherent epithelial cells measured by laser scanning reflection microscopy: determination of water permeability changes of renal principal cells.

K Maric 1, B Wiesner 1, D Lorenz 1, E Klussmann 1, T Betz 1, W Rosenthal 1
PMCID: PMC1301367  PMID: 11259291

Abstract

The water channel aquaporin-2 (AQP2), a key component of the antidiuretic machinery in the kidney, is rapidly regulated by the antidiuretic hormone vasopressin. The hormone exerts its action by inducing a translocation of AQP2 from intracellular vesicles to the cell membrane. This step requires the elevation of intracellular cyclic AMP. We describe here a new method, laser scanning reflection microscopy (LSRM), suitable for determining cellular osmotic water permeability coefficient changes in primary cultured inner medullary collecting duct (IMCD) cells. The recording of vertical-reflection-mode x-z-scan section areas of unstained, living IMCD cells proved useful and valid for the investigation of osmotic water permeability changes. The time-dependent increases of reflection-mode x-z-scan section areas of swelling cells were fitted to a single-exponential equation. The analysis of the time constants of these processes indicates a twofold increase in osmotic water permeability of IMCD cells after treatment of the cells both with forskolin, a cyclic AMP-elevating agent, and with Clostridium difficile toxin B, an inhibitor of Rho proteins that leads to depolymerization of F-actin-containing stress fibers. This indicates that both agents lead to the functional insertion of AQP2 into the cell membrane. Thus, we have established a new functional assay for the study of the regulation of the water permeability at the cellular level.

Full Text

The Full Text of this article is available as a PDF (261.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  2. Crowe W. E., Wills N. K. A simple method for monitoring changes in cell height using fluorescent microbeads and an Ussing-type chamber for the inverted microscope. Pflugers Arch. 1991 Oct;419(3-4):349–357. doi: 10.1007/BF00371117. [DOI] [PubMed] [Google Scholar]
  3. Deen P. M., Rijss J. P., Mulders S. M., Errington R. J., van Baal J., van Os C. H. Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. J Am Soc Nephrol. 1997 Oct;8(10):1493–1501. doi: 10.1681/ASN.V8101493. [DOI] [PubMed] [Google Scholar]
  4. Farinas J., Simanek V., Verkman A. S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys J. 1995 Apr;68(4):1613–1620. doi: 10.1016/S0006-3495(95)80335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Filler T. J., Peuker E. T. Reflection contrast microscopy (RCM): a forgotten technique? J Pathol. 2000 Apr;190(5):635–638. doi: 10.1002/(SICI)1096-9896(200004)190:5<635::AID-PATH571>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  6. Fisher R. S., Persson B. E., Spring K. R. Epithelial cell volume regulation: bicarbonate dependence. Science. 1981 Dec 18;214(4527):1357–1359. doi: 10.1126/science.7313695. [DOI] [PubMed] [Google Scholar]
  7. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  8. KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
  9. Katsura T., Verbavatz J. M., Farinas J., Ma T., Ausiello D. A., Verkman A. S., Brown D. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7212–7216. doi: 10.1073/pnas.92.16.7212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klussmann E., Maric K., Rosenthal W. The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol. 2000;141:33–95. doi: 10.1007/BFb0119577. [DOI] [PubMed] [Google Scholar]
  11. Klussmann E., Maric K., Wiesner B., Beyermann M., Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 1999 Feb 19;274(8):4934–4938. doi: 10.1074/jbc.274.8.4934. [DOI] [PubMed] [Google Scholar]
  12. Korchev Y. E., Gorelik J., Lab M. J., Sviderskaya E. V., Johnston C. L., Coombes C. R., Vodyanoy I., Edwards C. R. Cell volume measurement using scanning ion conductance microscopy. Biophys J. 2000 Jan;78(1):451–457. doi: 10.1016/S0006-3495(00)76607-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lerm M., Schmidt G., Aktories K. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol Lett. 2000 Jul 1;188(1):1–6. doi: 10.1111/j.1574-6968.2000.tb09159.x. [DOI] [PubMed] [Google Scholar]
  14. Maric K., Oksche A., Rosenthal W. Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells. Am J Physiol. 1998 Nov;275(5 Pt 2):F796–F801. doi: 10.1152/ajprenal.1998.275.5.F796. [DOI] [PubMed] [Google Scholar]
  15. Mooren F. C., Kinne R. K. Intracellular calcium in primary cultures of rat renal inner medullary collecting duct cells during variations of extracellular osmolality. Pflugers Arch. 1994 Jul;427(5-6):463–472. doi: 10.1007/BF00374262. [DOI] [PubMed] [Google Scholar]
  16. Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992 Apr 17;256(5055):385–387. doi: 10.1126/science.256.5055.385. [DOI] [PubMed] [Google Scholar]
  17. Valenti G., Frigeri A., Ronco P. M., D'Ettorre C., Svelto M. Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. J Biol Chem. 1996 Oct 4;271(40):24365–24370. doi: 10.1074/jbc.271.40.24365. [DOI] [PubMed] [Google Scholar]
  18. Valenti G., Procino G., Liebenhoff U., Frigeri A., Benedetti P. A., Ahnert-Hilger G., Nürnberg B., Svelto M., Rosenthal W. A heterotrimeric G protein of the Gi family is required for cAMP-triggered trafficking of aquaporin 2 in kidney epithelial cells. J Biol Chem. 1998 Aug 28;273(35):22627–22634. doi: 10.1074/jbc.273.35.22627. [DOI] [PubMed] [Google Scholar]
  19. Van Driessche W., De Smet P., Raskin G. An automatic monitoring system for epithelial cell height. Pflugers Arch. 1993 Oct;425(1-2):164–171. doi: 10.1007/BF00374517. [DOI] [PubMed] [Google Scholar]
  20. Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES