Abstract
The opening and closing of the pore of voltage-gated ion channels is the basis for the nervous impulse. These conformational changes are triggered by the movement of an intrinsic voltage sensor, the fourth transmembrane segment, S4. The central problem of how the movement of S4 is coupled to channel opening and where S4 is located in relation to the pore is still unsolved. Here, we estimate the position of the extracellular end of S4 in the Shaker potassium channel by analyzing the electrostatic effect of introduced charges in the pore-forming motif (S5-S6). We also present a three-dimensional model for all transmembrane segments. Knowledge of this structure is essential for the attempts to understand how voltage opens these channels.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggarwal S. K., MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996 Jun;16(6):1169–1177. doi: 10.1016/s0896-6273(00)80143-9. [DOI] [PubMed] [Google Scholar]
- Baker O. S., Larsson H. P., Mannuzzu L. M., Isacoff E. Y. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron. 1998 Jun;20(6):1283–1294. doi: 10.1016/s0896-6273(00)80507-3. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem. 1986;55:953–985. doi: 10.1146/annurev.bi.55.070186.004513. [DOI] [PubMed] [Google Scholar]
- Cha A., Snyder G. E., Selvin P. R., Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 1999 Dec 16;402(6763):809–813. doi: 10.1038/45552. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Hao Y., Guy H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–284. doi: 10.1006/jsbi.1998.3962. [DOI] [PubMed] [Google Scholar]
- Elinder F., Arhem P. Role of individual surface charges of voltage-gated K channels. Biophys J. 1999 Sep;77(3):1358–1362. doi: 10.1016/S0006-3495(99)76984-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elinder F., Arhem P. The functional surface charge density of a fast K channel in the myelinated axon of Xenopus laevis. J Membr Biol. 1998 Sep 15;165(2):175–181. doi: 10.1007/s002329900431. [DOI] [PubMed] [Google Scholar]
- Elinder F., Liu Y., Arhem P. Divalent cation effects on the Shaker K channel suggest a pentapeptide sequence as determinant of functional surface charge density. J Membr Biol. 1998 Sep 15;165(2):183–189. doi: 10.1007/s002329900432. [DOI] [PubMed] [Google Scholar]
- Glauner K. S., Mannuzzu L. M., Gandhi C. S., Isacoff E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature. 1999 Dec 16;402(6763):813–817. doi: 10.1038/45561. [DOI] [PubMed] [Google Scholar]
- Gulbis J. M., Mann S., MacKinnon R. Structure of a voltage-dependent K+ channel beta subunit. Cell. 1999 Jun 25;97(7):943–952. doi: 10.1016/s0092-8674(00)80805-3. [DOI] [PubMed] [Google Scholar]
- Hong K. H., Miller C. The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol. 2000 Jan;115(1):51–58. doi: 10.1085/jgp.115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn R. A new twist in the saga of charge movement in voltage-dependent ion channels. Neuron. 2000 Mar;25(3):511–514. doi: 10.1016/s0896-6273(00)81055-7. [DOI] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
- Kamb A., Iverson L. E., Tanouye M. A. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell. 1987 Jul 31;50(3):405–413. doi: 10.1016/0092-8674(87)90494-6. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Elinder F. The screw-helical voltage gating of ion channels. Proc Biol Sci. 1999 Apr 22;266(1421):843–852. doi: 10.1098/rspb.1999.0714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsson H. P., Baker O. S., Dhillon D. S., Isacoff E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron. 1996 Feb;16(2):387–397. doi: 10.1016/s0896-6273(00)80056-2. [DOI] [PubMed] [Google Scholar]
- Larsson H. P., Elinder F. A conserved glutamate is important for slow inactivation in K+ channels. Neuron. 2000 Sep;27(3):573–583. doi: 10.1016/s0896-6273(00)00067-2. [DOI] [PubMed] [Google Scholar]
- Li-Smerin Y., Hackos D. H., Swartz K. J. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel. Neuron. 2000 Feb;25(2):411–423. doi: 10.1016/s0896-6273(00)80904-6. [DOI] [PubMed] [Google Scholar]
- Mannuzzu L. M., Moronne M. M., Isacoff E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996 Jan 12;271(5246):213–216. doi: 10.1126/science.271.5246.213. [DOI] [PubMed] [Google Scholar]
- McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
- Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seoh S. A., Sigg D., Papazian D. M., Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 1996 Jun;16(6):1159–1167. doi: 10.1016/s0896-6273(00)80142-7. [DOI] [PubMed] [Google Scholar]
- Tiwari-Woodruff S. K., Lin M. A., Schulteis C. T., Papazian D. M. Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol. 2000 Feb;115(2):123–138. doi: 10.1085/jgp.115.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiwari-Woodruff S. K., Schulteis C. T., Mock A. F., Papazian D. M. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J. 1997 Apr;72(4):1489–1500. doi: 10.1016/S0006-3495(97)78797-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang N., George A. L., Jr, Horn R. Probing the outer vestibule of a sodium channel voltage sensor. Biophys J. 1997 Nov;73(5):2260–2268. doi: 10.1016/S0006-3495(97)78258-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys. 1998 Aug;31(3):239–295. doi: 10.1017/s0033583598003448. [DOI] [PubMed] [Google Scholar]
- Yusaf S. P., Wray D., Sivaprasadarao A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 1996 Nov-Dec;433(1-2):91–97. doi: 10.1007/s004240050253. [DOI] [PubMed] [Google Scholar]