Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1851–1862. doi: 10.1016/S0006-3495(01)76155-3

Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions.

Y A Ermakov 1, A Z Averbakh 1, A I Yusipovich 1, S Sukharev 1
PMCID: PMC1301374  PMID: 11259298

Abstract

The dipole component of the membrane boundary potential, phi(d), is an integral parameter that may report on the conformational state of the lipid headgroups and their hydration. In this work, we describe an experimental approach to measurements of the dipole potential changes, Deltaphi(d), and apply it in studies of Be(2+) and Gd(3+) interactions with membranes composed of phosphatidylserine (PS), phosphatidylcholine (PC), and their mixtures. Deltaphi(d) is determined as the difference between the changes of the total boundary potential, phi(b), measured by the IFC method in planar lipid membranes and the surface potential, phi(s), determined from the electrophoretic mobility of liposomes. The Gouy-Chapman-Stern formalism, combined with the condition of mass balance, well describes the ion equilibria for these high-affinity cations. For the adsorption of Be(2+) and Gd(3+) to PC membranes, and of Mg(2+) to PS membranes, the values of Deltaphi(b) and Deltaphi(s) are the same, indicative of no change of phi(d). Binding of Gd(3+) to PS-containing membranes induces changes of phi(d) of opposite signs depending on the density of ionized PS headgroups in the bilayer. At low density, the induced Deltaphi(d) is negative (-30 mV), consistent with the effect of dehydration of the surface. At maximal density (pure PS, neutral pH), adsorption of Be(2+) or Gd(3+) induces an increase of phi(d) of 35 or 140 mV, respectively. The onset of the strong positive dipole effect on PS membranes with Gd(3+) is observed near the zero charge point and correlates with a six-fold increase of membrane tension. The observed phenomena may reflect concerted reorientation of dipole moments of PS headgroups as a result of ion adsorption and lipid condensation. Their possible implications to in-vivo effects of these high-affinity ions are discussed.

Full Text

The Full Text of this article is available as a PDF (133.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Latorre R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J. 1978 Jan;21(1):1–17. doi: 10.1016/S0006-3495(78)85505-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babakov A. V., Ermishkin L. N., Liberman E. A. Influence of electric field on the capacity of phospholipid membranes. Nature. 1966 May 28;210(5039):953–955. doi: 10.1038/210953b0. [DOI] [PubMed] [Google Scholar]
  4. Bentz J., Alford D., Cohen J., Düzgüneş N. La3+-induced fusion of phosphatidylserine liposomes. Close approach, intermembrane intermediates, and the electrostatic surface potential. Biophys J. 1988 Apr;53(4):593–607. doi: 10.1016/S0006-3495(88)83138-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  6. Bratton D. L., Fadok V. A., Richter D. A., Kailey J. M., Guthrie L. A., Henson P. M. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem. 1997 Oct 17;272(42):26159–26165. doi: 10.1074/jbc.272.42.26159. [DOI] [PubMed] [Google Scholar]
  7. Cantor R. S. Solute modulation of conformational equilibria in intrinsic membrane proteins: apparent "cooperativity" without binding. Biophys J. 1999 Nov;77(5):2643–2647. doi: 10.1016/S0006-3495(99)77098-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carius W. Studies of nonlinear electrical effects of model membranes. Biophys Struct Mech. 1977 Sep 28;3(3-4):327–328. doi: 10.1007/BF00535705. [DOI] [PubMed] [Google Scholar]
  9. Cheng Y., Liu M., Li R., Wang C., Bai C., Wang K. Gadolinium induces domain and pore formation of human erythrocyte membrane: an atomic force microscopic study. Biochim Biophys Acta. 1999 Oct 15;1421(2):249–260. doi: 10.1016/s0005-2736(99)00125-x. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg M., Gresalfi T., Riccio T., McLaughlin S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry. 1979 Nov 13;18(23):5213–5223. doi: 10.1021/bi00590a028. [DOI] [PubMed] [Google Scholar]
  11. Ermakov YuA, Averbakh A. Z., Sukharev S. I. Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 1. Dipole and diffuse components of the boundary potential. Membr Cell Biol. 1997;11(4):539–554. [PubMed] [Google Scholar]
  12. Ermakov Y. A. The determination of binding site density and association constants for monovalent cation adsorption onto liposomes made from mixtures of zwitterionic and charged lipids. Biochim Biophys Acta. 1990 Mar 30;1023(1):91–97. doi: 10.1016/0005-2736(90)90013-e. [DOI] [PubMed] [Google Scholar]
  13. Fadok V. A., Bratton D. L., Frasch S. C., Warner M. L., Henson P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998 Jul;5(7):551–562. doi: 10.1038/sj.cdd.4400404. [DOI] [PubMed] [Google Scholar]
  14. Finch G. L., Nikula K. J., Hoover M. D. Dose-response relationships between inhaled beryllium metal and lung toxicity in C3H mice. Toxicol Sci. 1998 Mar;42(1):36–48. doi: 10.1006/toxs.1997.2412. [DOI] [PubMed] [Google Scholar]
  15. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graham I., Gagné J., Silvius J. R. Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid containing bilayers. Biochemistry. 1985 Dec 3;24(25):7123–7131. doi: 10.1021/bi00346a016. [DOI] [PubMed] [Google Scholar]
  18. Hamill O. P., McBride D. W., Jr The pharmacology of mechanogated membrane ion channels. Pharmacol Rev. 1996 Jun;48(2):231–252. [PubMed] [Google Scholar]
  19. Hammoudah M. M., Nir S., Isac T., Kornhauser R., Stewart T. P., Hui S. W., Vaz W. L. Interactions of La3+ with phosphatidylserine vesicles. Binding, phase transition, leakage and fusion. Biochim Biophys Acta. 1979 Dec 12;558(3):338–343. doi: 10.1016/0005-2736(79)90270-0. [DOI] [PubMed] [Google Scholar]
  20. Hauser H. Effect of inorganic cations on phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):309–325. doi: 10.1016/0009-3084(91)90083-n. [DOI] [PubMed] [Google Scholar]
  21. Hübner W., Mantsch H. H., Paltauf F., Hauser H. Conformation of phosphatidylserine in bilayers as studied by Fourier transform infrared spectroscopy. Biochemistry. 1994 Jan 11;33(1):320–326. doi: 10.1021/bi00167a042. [DOI] [PubMed] [Google Scholar]
  22. Li X. M., Zhang Y. F., Ni J. Z., Chen J. W., Hwang F. Effect of lanthanide ions on the phase behavior of dipalmitoylphosphatidylcholine multilamellar liposomes. J Inorg Biochem. 1994 Feb 1;53(2):139–149. doi: 10.1016/0162-0134(94)85028-3. [DOI] [PubMed] [Google Scholar]
  23. McLaughlin A., Grathwohl C., McLaughlin S. The adsorption of divalent cations to phosphatidylcholine bilayer membranes. Biochim Biophys Acta. 1978 Nov 16;513(3):338–357. doi: 10.1016/0005-2736(78)90203-1. [DOI] [PubMed] [Google Scholar]
  24. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  26. Oliet S. H., Bourque C. W. Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron. 1996 Jan;16(1):175–181. doi: 10.1016/s0896-6273(00)80034-3. [DOI] [PubMed] [Google Scholar]
  27. Petersheim M., Sun J. On the coordination of La3+ by phosphatidylserine. Biophys J. 1989 Apr;55(4):631–636. doi: 10.1016/S0006-3495(89)82860-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sawyer R. T., Fadok V. A., Kittle L. A., Maier L. A., Newman L. S. Beryllium-stimulated apoptosis in macrophage cell lines. Toxicology. 2000 Aug 21;149(2-3):129–142. doi: 10.1016/s0300-483x(00)00237-7. [DOI] [PubMed] [Google Scholar]
  29. Schoch P., Sargent D. F., Schwyzer R. Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes. J Membr Biol. 1979 Apr 12;46(1):71–89. doi: 10.1007/BF01959975. [DOI] [PubMed] [Google Scholar]
  30. Sukharev S. I., Sigurdson W. J., Kung C., Sachs F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol. 1999 Apr;113(4):525–540. doi: 10.1085/jgp.113.4.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tocanne J. F., Teissié J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta. 1990 Feb 28;1031(1):111–142. doi: 10.1016/0304-4157(90)90005-w. [DOI] [PubMed] [Google Scholar]
  32. Verstraeten S. V., Nogueira L. V., Schreier S., Oteiza P. I. Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys. 1997 Feb 1;338(1):121–127. doi: 10.1006/abbi.1996.9810. [DOI] [PubMed] [Google Scholar]
  33. Westman J., Eriksson L. E., Ehrenberg A. Interaction of the cationic form of amphiphilic drugs with phosphatidylcholine model membranes. Competition with lanthanide ions. Biophys Chem. 1984 Jan;19(1):57–68. doi: 10.1016/0301-4622(84)85006-1. [DOI] [PubMed] [Google Scholar]
  34. Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES