Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1863–1872. doi: 10.1016/S0006-3495(01)76156-5

Rapid compression transforms interfacial monolayers of pulmonary surfactant.

J M Crane 1, S B Hall 1
PMCID: PMC1301375  PMID: 11259299

Abstract

Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.

Full Text

The Full Text of this article is available as a PDF (139.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell C. A. Formation of glasses from liquids and biopolymers. Science. 1995 Mar 31;267(5206):1924–1935. doi: 10.1126/science.267.5206.1924. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bangham A. D., Morley C. J., Phillips M. C. The physical properties of an effective lung surfactant. Biochim Biophys Acta. 1979 Jun 21;573(3):552–556. doi: 10.1016/0005-2760(79)90229-7. [DOI] [PubMed] [Google Scholar]
  4. Bermel M. S., McBride J. T., Notter R. H. Lavaged excised rat lungs as a model of surfactant deficiency. Lung. 1984;162(2):99–113. doi: 10.1007/BF02715636. [DOI] [PubMed] [Google Scholar]
  5. Clements J. A. Functions of the alveolar lining. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):67–71. doi: 10.1164/arrd.1977.115.S.67. [DOI] [PubMed] [Google Scholar]
  6. Crane J. M., Putz G., Hall S. B. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys J. 1999 Dec;77(6):3134–3143. doi: 10.1016/S0006-3495(99)77143-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goerke J., Gonzales J. Temperature dependence of dipalmitoyl phosphatidylcholine monolayer stability. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1108–1114. doi: 10.1152/jappl.1981.51.5.1108. [DOI] [PubMed] [Google Scholar]
  8. Hildebran J. N., Goerke J., Clements J. A. Pulmonary surface film stability and composition. J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):604–611. doi: 10.1152/jappl.1979.47.3.604. [DOI] [PubMed] [Google Scholar]
  9. Horie T., Hildebrandt J. Dynamic compliance, limit cycles, and static equilibria of excised cat lung. J Appl Physiol. 1971 Sep;31(3):423–430. doi: 10.1152/jappl.1971.31.3.423. [DOI] [PubMed] [Google Scholar]
  10. Kahn M. C., Anderson G. J., Anyan W. R., Hall S. B. Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol. 1995 Nov;269(5 Pt 1):L567–L573. doi: 10.1152/ajplung.1995.269.5.L567. [DOI] [PubMed] [Google Scholar]
  11. Kampf J. P., Frank C. W., Malmström E. E., Hawker C. J. Adaptation of bulk constitutive equations to insoluble monolayer collapse at the air-water interface. Science. 1999 Mar 12;283(5408):1730–1733. doi: 10.1126/science.283.5408.1730. [DOI] [PubMed] [Google Scholar]
  12. Katsaras J., Raghunathan V. A., Dufourc E. J., Dufourcq J. Evidence for a two-dimensional molecular lattice in subgel phase DPPC bilayers. Biochemistry. 1995 Apr 11;34(14):4684–4688. doi: 10.1021/bi00014a023. [DOI] [PubMed] [Google Scholar]
  13. Kwong M. S., Egan E. A., Notter R. H., Shapiro D. L. Double-blind clinical trial of calf lung surfactant extract for the prevention of hyaline membrane disease in extremely premature infants. Pediatrics. 1985 Oct;76(4):585–592. [PubMed] [Google Scholar]
  14. Notter R. H., Finkelstein J. N., Taubold R. D. Comparative adsorption of natural lung surfactant, extracted phospholipids, and artificial phospholipid mixtures to the air-water interface. Chem Phys Lipids. 1983 Jul;33(1):67–80. doi: 10.1016/0009-3084(83)90009-9. [DOI] [PubMed] [Google Scholar]
  15. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  16. Putz G., Goerke J., Schürch S., Clements J. A. Evaluation of pressure-driven captive bubble surfactometer. J Appl Physiol (1985) 1994 Apr;76(4):1417–1424. doi: 10.1152/jappl.1994.76.4.1417. [DOI] [PubMed] [Google Scholar]
  17. Putz G., Goerke J., Taeusch H. W., Clements J. A. Comparison of captive and pulsating bubble surfactometers with use of lung surfactants. J Appl Physiol (1985) 1994 Apr;76(4):1425–1431. doi: 10.1152/jappl.1994.76.4.1425. [DOI] [PubMed] [Google Scholar]
  18. Putz G., Walch M., Van Eijk M., Haagsman H. P. A spreading technique for forming film in a captive bubble. Biophys J. 1998 Nov;75(5):2229–2239. doi: 10.1016/S0006-3495(98)77667-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rapp B, Gruler H. Phase transitions in thin smectic films at the air-water interface. Phys Rev A. 1990 Aug 15;42(4):2215–2218. doi: 10.1103/physreva.42.2215. [DOI] [PubMed] [Google Scholar]
  20. Schoel W. M., Schürch S., Goerke J. The captive bubble method for the evaluation of pulmonary surfactant: surface tension, area, and volume calculations. Biochim Biophys Acta. 1994 Aug 18;1200(3):281–290. doi: 10.1016/0304-4165(94)90169-4. [DOI] [PubMed] [Google Scholar]
  21. Schürch S., Bachofen H., Goerke J., Possmayer F. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol (1985) 1989 Dec;67(6):2389–2396. doi: 10.1152/jappl.1989.67.6.2389. [DOI] [PubMed] [Google Scholar]
  22. Schürch S., Qanbar R., Bachofen H., Possmayer F. The surface-associated surfactant reservoir in the alveolar lining. Biol Neonate. 1995;67 (Suppl 1):61–76. doi: 10.1159/000244207. [DOI] [PubMed] [Google Scholar]
  23. Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982 Jun;48(3):339–355. doi: 10.1016/0034-5687(82)90038-x. [DOI] [PubMed] [Google Scholar]
  24. Wang Z., Hall S. B., Notter R. H. Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids. J Lipid Res. 1995 Jun;36(6):1283–1293. [PubMed] [Google Scholar]
  25. Watkins J. C. The surface properties of pure phospholipids in relation to those of lung extracts. Biochim Biophys Acta. 1968 Mar 4;152(2):293–306. doi: 10.1016/0005-2760(68)90037-4. [DOI] [PubMed] [Google Scholar]
  26. Yu S. H., Possmayer F. Effect of pulmonary surfactant protein A and neutral lipid on accretion and organization of dipalmitoylphosphatidylcholine in surface films. J Lipid Res. 1996 Jun;37(6):1278–1288. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES