Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1873–1890. doi: 10.1016/S0006-3495(01)76157-7

New ordered metastable phases between the gel and subgel phases in hydrated phospholipids.

B Tenchov 1, R Koynova 1, G Rapp 1
PMCID: PMC1301376  PMID: 11259300

Abstract

Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase.

Full Text

The Full Text of this article is available as a PDF (336.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaurock A. E., McIntosh T. J. Structure of the crystalline bilayer in the subgel phase of dipalmitoylphosphatidylglycerol. Biochemistry. 1986 Jan 28;25(2):299–305. doi: 10.1021/bi00350a003. [DOI] [PubMed] [Google Scholar]
  2. Epand R. M., Gabel B., Epand R. F., Sen A., Hui S. W., Muga A., Surewicz W. K. Formation of a new stable phase of phosphatidylglycerols. Biophys J. 1992 Aug;63(2):327–332. doi: 10.1016/S0006-3495(92)81618-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harlos K., Eibl H. Hexagonal phases in phospholipids with saturated chains: phosphatidylethanolamines and phosphatidic acids. Biochemistry. 1981 May 12;20(10):2888–2892. doi: 10.1021/bi00513a027. [DOI] [PubMed] [Google Scholar]
  4. Harlos K. Pretransitions in the hydrocarbon chains of phosphatidylethanolamines. A wide angle X-ray diffraction study. Biochim Biophys Acta. 1978 Aug 17;511(3):348–355. doi: 10.1016/0005-2736(78)90272-9. [DOI] [PubMed] [Google Scholar]
  5. Jähnig F., Harlos K., Vogel H., Eibl H. Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt. Biochemistry. 1979 Apr 17;18(8):1459–1468. doi: 10.1021/bi00575a012. [DOI] [PubMed] [Google Scholar]
  6. Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994 Jan;69(1):1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
  7. Koynova R., Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998 Jun 29;1376(1):91–145. doi: 10.1016/s0304-4157(98)00006-9. [DOI] [PubMed] [Google Scholar]
  8. Koynova R., Koumanov A., Tenchov B. Metastable rippled gel phase in saturated phosphatidylcholines: calorimetric and densitometric characterization. Biochim Biophys Acta. 1996 Nov 13;1285(1):101–108. doi: 10.1016/s0005-2736(96)00155-1. [DOI] [PubMed] [Google Scholar]
  9. Koynova R., Tenchov B. G., Todinova S., Quinn P. J. Rapid reversible formation of a metastable subgel phase in saturated diacylphosphatidylcholines. Biophys J. 1995 Jun;68(6):2370–2375. doi: 10.1016/S0006-3495(95)80419-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laggner P., Lohner K., Degovics G., Müller K., Schuster A. Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem Phys Lipids. 1987 Jun;44(1):31–60. doi: 10.1016/0009-3084(87)90004-1. [DOI] [PubMed] [Google Scholar]
  11. Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J. 1993 Apr;64(4):1081–1096. doi: 10.1016/S0006-3495(93)81474-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lewis R. N., McElhaney R. N. Structures of the subgel phases of n-saturated diacyl phosphatidylcholine bilayers: FTIR spectroscopic studies of 13C = O and 2H labeled lipids. Biophys J. 1992 Jan;61(1):63–77. doi: 10.1016/S0006-3495(92)81816-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lewis R. N., McElhaney R. N. Subgel phases of n-saturated diacylphosphatidylcholines: a Fourier-transform infrared spectroscopic study. Biochemistry. 1990 Aug 28;29(34):7946–7953. doi: 10.1021/bi00486a024. [DOI] [PubMed] [Google Scholar]
  14. McIntosh T. J. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980 Feb;29(2):237–245. doi: 10.1016/S0006-3495(80)85128-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer H. W., Semmler K., Rettig W., Pohle W., Ulrich A. S., Grage S., Selle C., Quinn P. J. Hydration of DMPC and DPPC at 4 degrees C produces a novel subgel phase with convex-concave bilayer curvatures. Chem Phys Lipids. 2000 Apr;105(2):149–166. doi: 10.1016/s0009-3084(00)00124-9. [DOI] [PubMed] [Google Scholar]
  16. Nagle J. F., Wilkinson D. A. Dilatometric studies of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry. 1982 Aug 3;21(16):3817–3821. doi: 10.1021/bi00259a015. [DOI] [PubMed] [Google Scholar]
  17. Páli T., Bartucci R., Horváth L. I., Marsh D. Kinetics and dynamics of annealing during sub-gel phase formation in phospholipid bilayers: A saturation transfer electron spin resonance study. Biophys J. 1993 Jun;64(6):1781–1788. doi: 10.1016/S0006-3495(93)81549-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seddon J. M., Harlos K., Marsh D. Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water. J Biol Chem. 1983 Mar 25;258(6):3850–3854. [PubMed] [Google Scholar]
  19. Slater J. L., Huang C. Scanning calorimetry reveals a new phase transition in L-alpha-dipalmitoylphosphatidylcholine. Biophys J. 1987 Oct;52(4):667–670. doi: 10.1016/S0006-3495(87)83260-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Snyder R. G., Liang G. L., Strauss H. L., Mendelsohn R. IR spectroscopic study of the structure and phase behavior of long-chain diacylphosphatidylcholines in the gel state. Biophys J. 1996 Dec;71(6):3186–3198. doi: 10.1016/S0006-3495(96)79512-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sun W. J., Tristram-Nagle S., Suter R. M., Nagle J. F. Anomalous phase behavior of long chain saturated lecithin bilayers. Biochim Biophys Acta. 1996 Feb 21;1279(1):17–24. doi: 10.1016/0005-2736(95)00236-7. [DOI] [PubMed] [Google Scholar]
  22. Sun W. J., Tristram-Nagle S., Suter R. M., Nagle J. F. Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys J. 1996 Aug;71(2):885–891. doi: 10.1016/S0006-3495(96)79290-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF. Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4665–4676. doi: 10.1103/physreve.49.4665. [DOI] [PubMed] [Google Scholar]
  24. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  25. Tenchov B. G., Lis L. J., Quinn P. J. Mechanism and kinetics of the subtransition in hydrated L-dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1987 Feb 12;897(1):143–151. doi: 10.1016/0005-2736(87)90322-1. [DOI] [PubMed] [Google Scholar]
  26. Tenchov B. G., Yao H., Hatta I. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases. Biophys J. 1989 Oct;56(4):757–768. doi: 10.1016/S0006-3495(89)82723-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tenchov B., Koynova R., Rappolt M., Rapp G. An ordered metastable phase in hydrated phosphatidylethanolamine: the Y-transition. Biochim Biophys Acta. 1999 Feb 4;1417(1):183–190. doi: 10.1016/s0005-2736(98)00259-4. [DOI] [PubMed] [Google Scholar]
  28. Tenchov B., Rappolt M., Koynova R., Rapp G. New phases induced by sucrose in saturated phosphatidylethanolamines: an expanded lamellar gel phase and a cubic phase. Biochim Biophys Acta. 1996 Nov 13;1285(1):109–122. doi: 10.1016/s0005-2736(96)00156-3. [DOI] [PubMed] [Google Scholar]
  29. Tristram-Nagle S., Suter R. M., Sun W. J., Nagle J. F. Kinetics of subgel formation in DPPC: X-ray diffraction proves nucleation-growth hypothesis. Biochim Biophys Acta. 1994 Apr 20;1191(1):14–20. doi: 10.1016/0005-2736(94)90227-5. [DOI] [PubMed] [Google Scholar]
  30. Tristram-Nagle S., Wiener M. C., Yang C. P., Nagle J. F. Kinetics of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry. 1987 Jul 14;26(14):4288–4294. doi: 10.1021/bi00388a016. [DOI] [PubMed] [Google Scholar]
  31. Watts A., Harlos K., Marsh D. Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers evidence from X-ray diffraction. Biochim Biophys Acta. 1981 Jul 6;645(1):91–96. doi: 10.1016/0005-2736(81)90515-0. [DOI] [PubMed] [Google Scholar]
  32. Watts A., Harlos K., Maschke W., Marsh D. Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration. Biochim Biophys Acta. 1978 Jun 16;510(1):63–74. doi: 10.1016/0005-2736(78)90130-x. [DOI] [PubMed] [Google Scholar]
  33. Wilkinson D. A., McIntosh T. J. A subtransition in a phospholipid with a net charge, dipalmitoylphosphatidylglycerol. Biochemistry. 1986 Jan 28;25(2):295–298. doi: 10.1021/bi00350a002. [DOI] [PubMed] [Google Scholar]
  34. Yang CP, Nagle JF. Phase transformations in lipids follow classical kinetics with small fractional dimensionalities. Phys Rev A Gen Phys. 1988 May 15;37(10):3993–4000. doi: 10.1103/physreva.37.3993. [DOI] [PubMed] [Google Scholar]
  35. Zhang Y. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J. 1997 Feb;72(2 Pt 1):779–793. doi: 10.1016/s0006-3495(97)78712-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES