Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1891–1899. doi: 10.1016/s0006-3495(01)76158-9

Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization.

K Wadu-Mesthrige 1, N A Amro 1, J C Garno 1, S Xu 1, G Liu 1
PMCID: PMC1301377  PMID: 11259301

Abstract

A new methodology is introduced to produce nanometer-sized protein patterns. The approach includes two main steps, nanopatterning of self-assembled monolayers using atomic force microscopy (AFM)-based nanolithography and subsequent selective immobilization of proteins on the patterned monolayers. The resulting templates and protein patterns are characterized in situ using AFM. Compared with conventional protein fabrication methods, this approach is able to produce smaller patterns with higher spatial precision. In addition, fabrication and characterization are completed in near physiological conditions. The adsorption configuration and bioreactivity of the proteins within the nanopatterns are also studied in situ.

Full Text

The Full Text of this article is available as a PDF (527.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker A., Zídek L., Wiesler D., Chmelík J., Pagel M., Novotny M. V. Reaction of N-acetylglycyllysine methyl ester with 2-alkenals: an alternative model for covalent modification of proteins. Chem Res Toxicol. 1998 Jul;11(7):730–740. doi: 10.1021/tx970167e. [DOI] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
  4. Blawas A. S., Reichert W. M. Protein patterning. Biomaterials. 1998 Apr-May;19(7-9):595–609. doi: 10.1016/s0142-9612(97)00218-4. [DOI] [PubMed] [Google Scholar]
  5. Colton R. J., Baselt D. R., Dufrêne Y. F., Green J. B., Lee G. U. Scanning probe microscopy. Curr Opin Chem Biol. 1997 Oct;1(3):370–377. doi: 10.1016/s1367-5931(97)80076-2. [DOI] [PubMed] [Google Scholar]
  6. Dontha N., Nowall W. B., Kuhr W. G. Development of sub-micron patterned carbon electrodes for immunoassays. J Pharm Biomed Anal. 1999 Feb;19(1-2):83–91. doi: 10.1016/s0731-7085(98)00292-1. [DOI] [PubMed] [Google Scholar]
  7. Edelstein R. L., Tamanaha C. R., Sheehan P. E., Miller M. M., Baselt D. R., Whitman L. J., Colton R. J. The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron. 2000 Jan;14(10-11):805–813. doi: 10.1016/s0956-5663(99)00054-8. [DOI] [PubMed] [Google Scholar]
  8. Fodor S. P., Read J. L., Pirrung M. C., Stryer L., Lu A. T., Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991 Feb 15;251(4995):767–773. doi: 10.1126/science.1990438. [DOI] [PubMed] [Google Scholar]
  9. Hengsakul M., Cass A. E. Protein patterning with a photoactivatable derivative of biotin. Bioconjug Chem. 1996 Mar-Apr;7(2):249–254. doi: 10.1021/bc960007z. [DOI] [PubMed] [Google Scholar]
  10. Houseman Benjamin T., Mrksich Milan. Efficient Solid-Phase Synthesis of Peptide-Substituted Alkanethiols for the Preparation of Substrates That Support the Adhesion of Cells. J Org Chem. 1998 Oct 16;63(21):7552–7555. doi: 10.1021/jo981113s. [DOI] [PubMed] [Google Scholar]
  11. Jones V. W., Kenseth J. R., Porter M. D., Mosher C. L., Henderson E. Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem. 1998 Apr 1;70(7):1233–1241. doi: 10.1021/ac971125y. [DOI] [PubMed] [Google Scholar]
  12. Kolbe W. F., Ogletree D. F., Salmeron M. B. Atomic force microscopy imaging of T4 bacteriophages on silicon substrates. Ultramicroscopy. 1992 Jul;42-44(Pt B):1113–1117. doi: 10.1016/0304-3991(92)90411-c. [DOI] [PubMed] [Google Scholar]
  13. Liu G. Y., Xu S., Qian Y. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc Chem Res. 2000 Jul;33(7):457–466. doi: 10.1021/ar980081s. [DOI] [PubMed] [Google Scholar]
  14. Mooney J. F., Hunt A. J., McIntosh J. R., Liberko C. A., Walba D. M., Rogers C. T. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12287–12291. doi: 10.1073/pnas.93.22.12287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mrksich M., Chen C. S., Xia Y., Dike L. E., Ingber D. E., Whitesides G. M. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10775–10778. doi: 10.1073/pnas.93.20.10775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicolini C. From neural chip and engineered biomolecules to bioelectronic devices: an overview. Biosens Bioelectron. 1995;10(1-2):105–127. doi: 10.1016/0956-5663(95)96799-5. [DOI] [PubMed] [Google Scholar]
  17. Nyffenegger R. M., Penner R. M. Nanometer-Scale Surface Modification Using the Scanning Probe Microscope: Progress since 1991. Chem Rev. 1997 Jun 20;97(4):1195–1230. doi: 10.1021/cr960069i. [DOI] [PubMed] [Google Scholar]
  18. Pakalns T., Haverstick K. L., Fields G. B., McCarthy J. B., Mooradian D. L., Tirrell M. Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials. 1999 Dec;20(23-24):2265–2279. doi: 10.1016/s0142-9612(99)00157-x. [DOI] [PubMed] [Google Scholar]
  19. Schena M., Shalon D., Heller R., Chai A., Brown P. O., Davis R. W. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10614–10619. doi: 10.1073/pnas.93.20.10614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Silin V, V, Weetall H, Vanderah DJ. SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs) J Colloid Interface Sci. 1997 Jan 1;185(1):94–103. doi: 10.1006/jcis.1996.4586. [DOI] [PubMed] [Google Scholar]
  21. Silverton E. W., Navia M. A., Davies D. R. Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5140–5144. doi: 10.1073/pnas.74.11.5140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vinckier A., Heyvaert I., D'Hoore A., McKittrick T., Van Haesendonck C., Engelborghs Y., Hellemans L. Immobilizing and imaging microtubules by atomic force microscopy. Ultramicroscopy. 1995 Mar;57(4):337–343. doi: 10.1016/0304-3991(94)00194-r. [DOI] [PubMed] [Google Scholar]
  23. Wadu-Mesthrige K., Amro N. A., Liu G. Y. Immobilization of proteins on self-assembled monolayers. Scanning. 2000 Nov-Dec;22(6):380–388. doi: 10.1002/sca.4950220607. [DOI] [PubMed] [Google Scholar]
  24. Wagner P., Hegner M., Kernen P., Zaugg F., Semenza G. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Biophys J. 1996 May;70(5):2052–2066. doi: 10.1016/S0006-3495(96)79810-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES