Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1905–1914. doi: 10.1016/S0006-3495(01)76160-7

Photolytic release of MgADP reduces rigor force in smooth muscle.

A S Khromov 1, A P Somlyo 1, A V Somlyo 1
PMCID: PMC1301379  PMID: 11259303

Abstract

Photolytic release of MgADP (25-300 microM) from caged ADP in permeabilized tonic (rabbit femoral artery-Rfa) and phasic (rabbit bladder-Rbl) smooth muscle in high-tension rigor state, in the absence of Ca(2+), caused an exponential decline (approximately 1.5% in Rfa and approximately 6% in Rbl) of rigor force, with the rate proportional to the liberated [MgADP]. The apparent second-order rate constant of MgADP binding was estimated as approximately 1.0 x 10(6) M(-1) s(-1) for both smooth muscles. In control experiments, designed to test the specificity of MgADP, photolysis of caged ADP in the absence of Mg(2+) did not decrease rigor force in either smooth muscle, but rigor force decreased after photolytic release of Mg(2+) in the presence of ADP. The effects of photolysis of caged ADP were similar in smooth muscles containing thiophosphorylated or non-phosphorylated regulatory myosin light chains. Stretching or releasing (within range of 0.1-1.2% of initial Ca(2+)-activated force) did not affect the rate or relative amplitude of the force decrease. The effect of additions of MgADP to rigor cross-bridges could result from rotation of the lever arm of smooth muscle myosin, but this need not imply that ADP-release is a significant force-producing step of the physiological cross-bridge cycle.

Full Text

The Full Text of this article is available as a PDF (139.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arner A., Hellstrand P., Rüegg J. C. Influence of ATP, ADP and AMPPNP on the energetics of contraction in skinned smooth muscle. Prog Clin Biol Res. 1987;245:43–57. [PubMed] [Google Scholar]
  2. Ashton F. T., Somlyo A. V., Somlyo A. P. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol. 1975 Oct 15;98(1):17–29. doi: 10.1016/s0022-2836(75)80098-2. [DOI] [PubMed] [Google Scholar]
  3. Bond M., Somlyo A. V. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol. 1982 Nov;95(2 Pt 1):403–413. doi: 10.1083/jcb.95.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corrie J. E., Brandmeier B. D., Ferguson R. E., Trentham D. R., Kendrick-Jones J., Hopkins S. C., van der Heide U. A., Goldman Y. E., Sabido-David C., Dale R. E. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999 Jul 29;400(6743):425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
  5. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  6. Dantzig J. A., Barsotti R. J., Manz S., Sweeney H. L., Goldman Y. E. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys J. 1999 Jul;77(1):386–397. doi: 10.1016/S0006-3495(99)76897-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dantzig J. A., Hibberd M. G., Trentham D. R., Goldman Y. E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol. 1991 Jan;432:639–680. doi: 10.1113/jphysiol.1991.sp018405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
  9. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  10. Fuglsang A., Khromov A., Török K., Somlyo A. V., Somlyo A. P. Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil. 1993 Dec;14(6):666–677. doi: 10.1007/BF00141563. [DOI] [PubMed] [Google Scholar]
  11. Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
  12. Gollub J., Cremo C. R., Cooke R. Phosphorylation regulates the ADP-induced rotation of the light chain domain of smooth muscle myosin. Biochemistry. 1999 Aug 3;38(31):10107–10118. doi: 10.1021/bi990267e. [DOI] [PubMed] [Google Scholar]
  13. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  14. Hartshorne D. J., Ito M., Erdödi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil. 1998 May;19(4):325–341. doi: 10.1023/a:1005385302064. [DOI] [PubMed] [Google Scholar]
  15. Holmes K. C. A molecular model for muscle contraction. Acta Crystallogr A. 1998 Nov 1;54(Pt 6 1):789–797. doi: 10.1107/s0108767398010307. [DOI] [PubMed] [Google Scholar]
  16. Houdusse A., Szent-Gyorgyi A. G., Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238–11243. doi: 10.1073/pnas.200376897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  18. Jontes J. D., Wilson-Kubalek E. M., Milligan R. A. A 32 degree tail swing in brush border myosin I on ADP release. Nature. 1995 Dec 14;378(6558):751–753. doi: 10.1038/378751a0. [DOI] [PubMed] [Google Scholar]
  19. Kamm K. E., Stull J. T. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313. doi: 10.1146/annurev.ph.51.030189.001503. [DOI] [PubMed] [Google Scholar]
  20. Kaplan J. H., Ellis-Davies G. C. Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6571–6575. doi: 10.1073/pnas.85.17.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kelley C. A., Takahashi M., Yu J. H., Adelstein R. S. An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem. 1993 Jun 15;268(17):12848–12854. [PubMed] [Google Scholar]
  22. Khromov A. S., Somlyo A. V., Somlyo A. P. Thiophosphorylation of myosin light chain increases rigor stiffness of rabbit smooth muscle. J Physiol. 1998 Oct 15;512(Pt 2):345–350. doi: 10.1111/j.1469-7793.1998.345be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Khromov A., Somlyo A. V., Somlyo A. P. MgADP promotes a catch-like state developed through force-calcium hysteresis in tonic smooth muscle. Biophys J. 1998 Oct;75(4):1926–1934. doi: 10.1016/S0006-3495(98)77633-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Khromov A., Somlyo A. V., Trentham D. R., Zimmermann B., Somlyo A. P. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J. 1995 Dec;69(6):2611–2622. doi: 10.1016/S0006-3495(95)80132-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lu Z., Moss R. L., Walker J. W. Tension transients initiated by photogeneration of MgADP in skinned skeletal muscle fibers. J Gen Physiol. 1993 Jun;101(6):867–888. doi: 10.1085/jgp.101.6.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malmqvist U., Arner A. Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflugers Arch. 1991 Jul;418(6):523–530. doi: 10.1007/BF00370566. [DOI] [PubMed] [Google Scholar]
  27. Matthew J. D., Khromov A. S., Trybus K. M., Somlyo A. P., Somlyo A. V. Myosin essential light chain isoforms modulate the velocity of shortening propelled by nonphosphorylated cross-bridges. J Biol Chem. 1998 Nov 20;273(47):31289–31296. doi: 10.1074/jbc.273.47.31289. [DOI] [PubMed] [Google Scholar]
  28. McCray J. A., Fidler-Lim N., Ellis-Davies G. C., Kaplan J. H. Rate of release of Ca2+ following laser photolysis of the DM-nitrophen-Ca2+ complex. Biochemistry. 1992 Sep 22;31(37):8856–8861. doi: 10.1021/bi00152a023. [DOI] [PubMed] [Google Scholar]
  29. Nishiye E., Somlyo A. V., Török K., Somlyo A. P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol. 1993 Jan;460:247–271. doi: 10.1113/jphysiol.1993.sp019470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  31. Rhee A. Y., Brozovich F. V. The smooth muscle cross-bridge cycle studied using sinusoidal length perturbations. Biophys J. 2000 Sep;79(3):1511–1523. doi: 10.1016/S0006-3495(00)76402-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodger C. D., Tregear R. T. Letter: Crossbridge angle when ADP is bound to myosin. J Mol Biol. 1974 Jun 25;86(2):495–497. doi: 10.1016/0022-2836(74)90033-3. [DOI] [PubMed] [Google Scholar]
  33. Shirakawa I., Chaen S., Bagshaw C. R., Sugi H. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog. Biophys J. 2000 Feb;78(2):918–926. doi: 10.1016/S0006-3495(00)76649-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
  35. Somlyo A. P. Myosin isoforms in smooth muscle: how may they affect function and structure? J Muscle Res Cell Motil. 1993 Dec;14(6):557–563. doi: 10.1007/BF00141552. [DOI] [PubMed] [Google Scholar]
  36. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  37. Somlyo A. P., Somlyo A. V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000 Jan 15;522(Pt 2):177–185. doi: 10.1111/j.1469-7793.2000.t01-2-00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takezawa Y., Kim D. S., Ogino M., Sugimoto Y., Kobayashi T., Arata T., Wakabayashi K. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction. Biophys J. 1999 Apr;76(4):1770–1783. doi: 10.1016/S0006-3495(99)77338-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trinkle-Mulcahy L., Siegman M. J., Butler T. M. Metabolic characteristics of alpha-toxin-permeabilized smooth muscle. Am J Physiol. 1994 Jun;266(6 Pt 1):C1673–C1683. doi: 10.1152/ajpcell.1994.266.6.C1673. [DOI] [PubMed] [Google Scholar]
  41. White S., Martin A. F., Periasamy M. Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am J Physiol. 1993 May;264(5 Pt 1):C1252–C1258. doi: 10.1152/ajpcell.1993.264.5.C1252. [DOI] [PubMed] [Google Scholar]
  42. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  43. Zucker R. Photorelease techniques for raising or lowering intracellular Ca2+. Methods Cell Biol. 1994;40:31–63. doi: 10.1016/s0091-679x(08)61109-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES