Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1926–1931. doi: 10.1016/S0006-3495(01)76162-0

Binding of dystrophin's tandem calponin homology domain to F-actin is modulated by actin's structure.

A Orlova 1, I N Rybakova 1, E Prochniewicz 1, D D Thomas 1, J M Ervasti 1, E H Egelman 1
PMCID: PMC1301381  PMID: 11259305

Abstract

Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.

Full Text

The Full Text of this article is available as a PDF (301.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
  2. Belkin A. M., Burridge K. Association of aciculin with dystrophin and utrophin. J Biol Chem. 1995 Mar 17;270(11):6328–6337. doi: 10.1074/jbc.270.11.6328. [DOI] [PubMed] [Google Scholar]
  3. Bevans C. G., Harris A. L. Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates. J Biol Chem. 1999 Feb 5;274(6):3711–3719. doi: 10.1074/jbc.274.6.3711. [DOI] [PubMed] [Google Scholar]
  4. Bonilla E., Samitt C. E., Miranda A. F., Hays A. P., Salviati G., DiMauro S., Kunkel L. M., Hoffman E. P., Rowland L. P. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell. 1988 Aug 12;54(4):447–452. doi: 10.1016/0092-8674(88)90065-7. [DOI] [PubMed] [Google Scholar]
  5. Chan Y., Kunkel L. M. In vitro expressed dystrophin fragments do not associate with each other. FEBS Lett. 1997 Jun 30;410(2-3):153–159. doi: 10.1016/s0014-5793(97)00454-7. [DOI] [PubMed] [Google Scholar]
  6. Cook R. K., Root D., Miller C., Reisler E., Rubenstein P. A. Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus. J Biol Chem. 1993 Feb 5;268(4):2410–2415. [PubMed] [Google Scholar]
  7. DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
  8. Hemmings L., Kuhlman P. A., Critchley D. R. Analysis of the actin-binding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J Cell Biol. 1992 Mar;116(6):1369–1380. doi: 10.1083/jcb.116.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keep N. H., Winder S. J., Moores C. A., Walke S., Norwood F. L., Kendrick-Jones J. Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer. Structure. 1999 Dec 15;7(12):1539–1546. doi: 10.1016/s0969-2126(00)88344-6. [DOI] [PubMed] [Google Scholar]
  10. Khaitlina S., Hinssen H. Conformational changes in actin induced by its interaction with gelsolin. Biophys J. 1997 Aug;73(2):929–937. doi: 10.1016/S0006-3495(97)78125-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsudaira P. Modular organization of actin crosslinking proteins. Trends Biochem Sci. 1991 Mar;16(3):87–92. doi: 10.1016/0968-0004(91)90039-x. [DOI] [PubMed] [Google Scholar]
  12. Moores C. A., Keep N. H., Kendrick-Jones J. Structure of the utrophin actin-binding domain bound to F-actin reveals binding by an induced fit mechanism. J Mol Biol. 2000 Mar 24;297(2):465–480. doi: 10.1006/jmbi.2000.3583. [DOI] [PubMed] [Google Scholar]
  13. Mühlrad A. Studies on the properties of chemically modified actin. II. Trinitrophenylation. Biochim Biophys Acta. 1968 Oct 1;162(3):444–451. doi: 10.1016/0005-2728(68)90130-8. [DOI] [PubMed] [Google Scholar]
  14. Norwood F. L., Sutherland-Smith A. J., Keep N. H., Kendrick-Jones J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure. 2000 May 15;8(5):481–491. doi: 10.1016/s0969-2126(00)00132-5. [DOI] [PubMed] [Google Scholar]
  15. O'Donoghue S. I., Miki M., dos Remedios C. G. Removing the two C-terminal residues of actin affects the filament structure. Arch Biochem Biophys. 1992 Feb 14;293(1):110–116. doi: 10.1016/0003-9861(92)90372-4. [DOI] [PubMed] [Google Scholar]
  16. Orlova A., Egelman E. H. Structural dynamics of F-actin: I. Changes in the C terminus. J Mol Biol. 1995 Feb 3;245(5):582–597. doi: 10.1006/jmbi.1994.0048. [DOI] [PubMed] [Google Scholar]
  17. Orlova A., Prochniewicz E., Egelman E. H. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol. 1995 Feb 3;245(5):598–607. doi: 10.1006/jmbi.1994.0049. [DOI] [PubMed] [Google Scholar]
  18. Pons F., Augier N., Heilig R., Léger J., Mornet D., Léger J. J. Isolated dystrophin molecules as seen by electron microscopy. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7851–7855. doi: 10.1073/pnas.87.20.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prochniewicz E., Thomas D. D. Differences in structural dynamics of muscle and yeast actin accompany differences in functional interactions with myosin. Biochemistry. 1999 Nov 9;38(45):14860–14867. doi: 10.1021/bi991343g. [DOI] [PubMed] [Google Scholar]
  20. Prochniewicz E., Zhang Q., Janmey P. A., Thomas D. D. Cooperativity in F-actin: binding of gelsolin at the barbed end affects structure and dynamics of the whole filament. J Mol Biol. 1996 Aug 2;260(5):756–766. doi: 10.1006/jmbi.1996.0435. [DOI] [PubMed] [Google Scholar]
  21. Puius Y. A., Mahoney N. M., Almo S. C. The modular structure of actin-regulatory proteins. Curr Opin Cell Biol. 1998 Feb;10(1):23–34. doi: 10.1016/s0955-0674(98)80083-5. [DOI] [PubMed] [Google Scholar]
  22. Renley B. A., Rybakova I. N., Amann K. J., Ervasti J. M. Dystrophin binding to nonmuscle actin. Cell Motil Cytoskeleton. 1998;41(3):264–270. doi: 10.1002/(SICI)1097-0169(1998)41:3<264::AID-CM7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  23. Ressad F., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D., Carlier M. F. Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem. 1998 Aug 14;273(33):20894–20902. doi: 10.1074/jbc.273.33.20894. [DOI] [PubMed] [Google Scholar]
  24. Rybakova I. N., Amann K. J., Ervasti J. M. A new model for the interaction of dystrophin with F-actin. J Cell Biol. 1996 Nov;135(3):661–672. doi: 10.1083/jcb.135.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rybakova I. N., Ervasti J. M. Dystrophin-glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J Biol Chem. 1997 Nov 7;272(45):28771–28778. doi: 10.1074/jbc.272.45.28771. [DOI] [PubMed] [Google Scholar]
  26. Stradal T., Kranewitter W., Winder S. J., Gimona M. CH domains revisited. FEBS Lett. 1998 Jul 17;431(2):134–137. doi: 10.1016/s0014-5793(98)00751-0. [DOI] [PubMed] [Google Scholar]
  27. Suzuki A., Ito T. Polymorphism of F-actin assembly. 2. Effects of barbed end capping on F-actin assembly. Biochemistry. 1996 Apr 23;35(16):5245–5249. doi: 10.1021/bi9526948. [DOI] [PubMed] [Google Scholar]
  28. Tidball J. G., Law D. J. Dystrophin is required for normal thin filament-membrane associations at myotendinous junctions. Am J Pathol. 1991 Jan;138(1):17–21. [PMC free article] [PubMed] [Google Scholar]
  29. Winder S. J., Hemmings L., Maciver S. K., Bolton S. J., Tinsley J. M., Davies K. E., Critchley D. R., Kendrick-Jones J. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J Cell Sci. 1995 Jan;108(Pt 1):63–71. doi: 10.1242/jcs.108.1.63. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES