Abstract
When a single molecule of double-stranded DNA is stretched beyond its B-form contour length, the measured force shows a highly cooperative overstretching transition. We have measured the force at which this transition occurs as a function of temperature. To do this, single molecules of DNA were captured between two polystyrene beads in an optical tweezers apparatus. As the temperature of the solution surrounding a captured molecule was increased from 11 degrees C to 52 degrees C in 500 mM NaCl, the overstretching transition force decreased from 69 pN to 50 pN. This reduction is attributed to a decrease in the stability of the DNA double helix with increasing temperature. These results quantitatively agree with a model that asserts that DNA melting occurs during the overstretching transition. With this model, the data may be analyzed to obtain the change in the melting entropy DeltaS of DNA with temperature. The observed nonlinear temperature dependence of DeltaS is a result of the positive change in heat capacity of DNA upon melting, which we determine from our stretching measurements to be DeltaC(p) = 60 +/- 10 cal/mol K bp, in agreement with calorimetric measurements.
Full Text
The Full Text of this article is available as a PDF (102.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahsan A., Rudnick J., Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys J. 1998 Jan;74(1):132–137. doi: 10.1016/S0006-3495(98)77774-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennink M. L., Schärer O. D., Kanaar R., Sakata-Sogawa K., Schins J. M., Kanger J. S., de Grooth B. G., Greve J. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry. 1999 Jul 1;36(3):200–208. doi: 10.1002/(sici)1097-0320(19990701)36:3<200::aid-cyto9>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Blake R. D., Delcourt S. G. Thermal stability of DNA. Nucleic Acids Res. 1998 Jul 15;26(14):3323–3332. doi: 10.1093/nar/26.14.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalikian T. V., Völker J., Plum G. E., Breslauer K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7853–7858. doi: 10.1073/pnas.96.14.7853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
- Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenwedel D. W. Salt effects on the denaturation of DNA. IV. A calorimetric study of the helix-coil conversion of the alternating copolymer poly[d(A-T)]. Biochim Biophys Acta. 1975 Jul 7;395(3):246–257. doi: 10.1016/0005-2787(75)90195-1. [DOI] [PubMed] [Google Scholar]
- Hegner M., Smith S. B., Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10109–10114. doi: 10.1073/pnas.96.18.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holbrook J. A., Capp M. W., Saecker R. M., Record M. T., Jr Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999 Jun 29;38(26):8409–8422. doi: 10.1021/bi990043w. [DOI] [PubMed] [Google Scholar]
- Hyre D. E., Le Trong I., Freitag S., Stenkamp R. E., Stayton P. S. Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Protein Sci. 2000 May;9(5):878–885. doi: 10.1110/ps.9.5.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelesarov I., Crane-Robinson C., Privalov P. L. The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J Mol Biol. 1999 Dec 10;294(4):981–995. doi: 10.1006/jmbi.1999.3284. [DOI] [PubMed] [Google Scholar]
- Kosikov K. M., Gorin A. A., Zhurkin V. B., Olson W. K. DNA stretching and compression: large-scale simulations of double helical structures. J Mol Biol. 1999 Jun 25;289(5):1301–1326. doi: 10.1006/jmbi.1999.2798. [DOI] [PubMed] [Google Scholar]
- Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magazzú G., Bottaro G., Cataldo F., Iacono G., Di Donato F., Patane R., Cavataio F., Maltese I., Romano C., Arco A. Increasing incidence of childhood celiac disease in Sicily: results of a multicenter study. Acta Paediatr. 1994 Oct;83(10):1065–1069. doi: 10.1111/j.1651-2227.1994.tb12987.x. [DOI] [PubMed] [Google Scholar]
- Mehta A. D., Finer J. T., Spudich J. A. Reflections of a lucid dreamer: optical trap design considerations. Methods Cell Biol. 1998;55:47–69. doi: 10.1016/s0091-679x(08)60402-1. [DOI] [PubMed] [Google Scholar]
- Petruska J., Goodman M. F. Enthalpy-entropy compensation in DNA melting thermodynamics. J Biol Chem. 1995 Jan 13;270(2):746–750. doi: 10.1074/jbc.270.2.746. [DOI] [PubMed] [Google Scholar]
- Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys J. 2001 Feb;80(2):882–893. doi: 10.1016/S0006-3495(01)76067-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix. 2. Effect of solution conditions. Biophys J. 2001 Feb;80(2):894–900. doi: 10.1016/S0006-3495(01)76068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J. 1999 Dec;77(6):3242–3251. doi: 10.1016/S0006-3495(99)77155-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992 Nov 13;258(5085):1122–1126. doi: 10.1126/science.1439819. [DOI] [PubMed] [Google Scholar]
- Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. C., Wenner J. R., Rouzina I., Bloomfield V. A. Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys J. 2001 Feb;80(2):874–881. doi: 10.1016/S0006-3495(01)76066-3. [DOI] [PMC free article] [PubMed] [Google Scholar]