Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1957–1966. doi: 10.1016/S0006-3495(01)76165-6

Solution structure of the SL1 RNA of the M1 double-stranded RNA virus of Saccharomyces cerevisiae.

J S Yoo 1, H K Cheong 1, B J Lee 1, Y B Kim 1, C Cheong 1
PMCID: PMC1301384  PMID: 11259308

Abstract

The 20-nucleotide SL1 VBS RNA, 5'-GGAGACGC[GAUUC]GCGCUCC (bulged A underlined and loop bases in brackets), plays a crucial role in viral particle binding to the plus strand and packaging of the RNA. Its structure was determined by NMR spectroscopy. Structure calculations gave a precisely defined structure, with an average pairwise root mean square deviation (RMSD) of 1.28 A for the entire molecule, 0.57 A for the loop region (C8-G14), and 0.46 A for the bulge region (G4-G7, C15-C17). Base stacking continues for three nucleotides on the 5' side of the loop. The final structure contains a single hydrogen bond involving the guanine imino proton and the carbonyl O(2) of the cytosine between the nucleotides on the 5' and 3' ends of the loop, although they do not form a Watson-Crick base pair. All three pyrimidine bases in the loop point toward the major groove, which implies that Cap-Pol protein may recognize the major groove of the SL1 loop region. The bulged A5 residue is stacked in the stem, but nuclear Overhauser enhancements (NOEs) suggest that A5 spends part of the time in the bulged-out conformation. The rigid conformation of the upper stem and loop regions may allow the SL1 VBS RNA to interact with Cap-Pol protein without drastically changing its own conformation.

Full Text

The Full Text of this article is available as a PDF (254.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borer P. N., Lin Y., Wang S., Roggenbuck M. W., Gott J. M., Uhlenbeck O. C., Pelczer I. Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry. 1995 May 16;34(19):6488–6503. doi: 10.1021/bi00019a030. [DOI] [PubMed] [Google Scholar]
  2. Cheong C., Varani G., Tinoco I., Jr Solution structure of an unusually stable RNA hairpin, 5'GGAC(UUCG)GUCC. Nature. 1990 Aug 16;346(6285):680–682. doi: 10.1038/346680a0. [DOI] [PubMed] [Google Scholar]
  3. Colvin R. A., White S. W., Garcia-Blanco M. A., Hoffman D. W. Structural features of an RNA containing the CUGGGA loop of the human immunodeficiency virus type 1 trans-activation response element. Biochemistry. 1993 Feb 2;32(4):1105–1112. doi: 10.1021/bi00055a016. [DOI] [PubMed] [Google Scholar]
  4. Davis P. W., Thurmes W., Tinoco I., Jr Structure of a small RNA hairpin. Nucleic Acids Res. 1993 Feb 11;21(3):537–545. doi: 10.1093/nar/21.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eguchi Y., Tomizawa J. Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. J Mol Biol. 1991 Aug 20;220(4):831–842. doi: 10.1016/0022-2836(91)90356-b. [DOI] [PubMed] [Google Scholar]
  6. Feigon J., Dieckmann T., Smith F. W. Aptamer structures from A to zeta. Chem Biol. 1996 Aug;3(8):611–617. doi: 10.1016/s1074-5521(96)90127-1. [DOI] [PubMed] [Google Scholar]
  7. Fujimura T., Esteban R., Esteban L. M., Wickner R. B. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell. 1990 Aug 24;62(4):819–828. doi: 10.1016/0092-8674(90)90125-x. [DOI] [PubMed] [Google Scholar]
  8. Fujimura T., Ribas J. C., Makhov A. M., Wickner R. B. Pol of gag-pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature. 1992 Oct 22;359(6397):746–749. doi: 10.1038/359746a0. [DOI] [PubMed] [Google Scholar]
  9. Grahn E., Stonehouse N. J., Murray J. B., van den Worm S., Valegård K., Fridborg K., Stockley P. G., Liljas L. Crystallographic studies of RNA hairpins in complexes with recombinant MS2 capsids: implications for binding requirements. RNA. 1999 Jan;5(1):131–138. doi: 10.1017/s1355838299981645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenbaum N. L., Radhakrishnan I., Patel D. J., Hirsh D. Solution structure of the donor site of a trans-splicing RNA. Structure. 1996 Jun 15;4(6):725–733. doi: 10.1016/s0969-2126(96)00078-0. [DOI] [PubMed] [Google Scholar]
  11. Grüne M., Görlach M., Soskic V., Klussmann S., Bald R., Fürste J. P., Erdmann V. A., Brown L. R. Initial analysis of 750 MHz NMR spectra of selective 15N-G,U labelled E. coli 5S rRNA. FEBS Lett. 1996 Apr 29;385(1-2):114–118. doi: 10.1016/0014-5793(96)00361-4. [DOI] [PubMed] [Google Scholar]
  12. Hammitt D. G., Muench M. M., Williamson R. A. Antibody binding to greater than 50% of sperm at the tail tip does not impair male fertility. Fertil Steril. 1988 Jan;49(1):174–177. doi: 10.1016/s0015-0282(16)59674-5. [DOI] [PubMed] [Google Scholar]
  13. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  14. Jaeger J. A., Tinoco I., Jr An NMR study of the HIV-1 TAR element hairpin. Biochemistry. 1993 Nov 23;32(46):12522–12530. doi: 10.1021/bi00097a032. [DOI] [PubMed] [Google Scholar]
  15. Jaeger L., Michel F., Westhof E. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol. 1994 Mar 11;236(5):1271–1276. doi: 10.1016/0022-2836(94)90055-8. [DOI] [PubMed] [Google Scholar]
  16. Kalurachchi K., Uma K., Zimmermann R. A., Nikonowicz E. P. Structural features of the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA defined using NMR spectroscopy. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2139–2144. doi: 10.1073/pnas.94.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laing L. G., Hall K. B. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. Biochemistry. 1996 Oct 22;35(42):13586–13596. doi: 10.1021/bi961310q. [DOI] [PubMed] [Google Scholar]
  18. Legault P., Jucker F. M., Pardi A. Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA. FEBS Lett. 1995 Apr 3;362(2):156–160. doi: 10.1016/0014-5793(95)00232-x. [DOI] [PubMed] [Google Scholar]
  19. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  20. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Puglisi J. D., Wyatt J. R., Tinoco I., Jr Solution conformation of an RNA hairpin loop. Biochemistry. 1990 May 1;29(17):4215–4226. doi: 10.1021/bi00469a026. [DOI] [PubMed] [Google Scholar]
  22. Ribas J. C., Fujimura T., Wickner R. B. Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. J Biol Chem. 1994 Nov 11;269(45):28420–28428. [PubMed] [Google Scholar]
  23. Romaniuk P. J., Lowary P., Wu H. N., Stormo G., Uhlenbeck O. C. RNA binding site of R17 coat protein. Biochemistry. 1987 Mar 24;26(6):1563–1568. doi: 10.1021/bi00380a011. [DOI] [PubMed] [Google Scholar]
  24. Schneider D., Tuerk C., Gold L. Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J Mol Biol. 1992 Dec 5;228(3):862–869. doi: 10.1016/0022-2836(92)90870-p. [DOI] [PubMed] [Google Scholar]
  25. Shen L. X., Cai Z., Tinoco I., Jr RNA structure at high resolution. FASEB J. 1995 Aug;9(11):1023–1033. doi: 10.1096/fasebj.9.11.7544309. [DOI] [PubMed] [Google Scholar]
  26. Shen Y., Bruenn J. A. RNA structural requirements for RNA binding, replication, and packaging in the yeast double-stranded RNA virus. Virology. 1993 Aug;195(2):481–491. doi: 10.1006/viro.1993.1399. [DOI] [PubMed] [Google Scholar]
  27. Sich C., Ohlenschläger O., Ramachandran R., Görlach M., Brown L. R. Structure of an RNA hairpin loop with a 5'-CGUUUCG-3' loop motif by heteronuclear NMR spectroscopy and distance geometry. Biochemistry. 1997 Nov 18;36(46):13989–14002. doi: 10.1021/bi971207g. [DOI] [PubMed] [Google Scholar]
  28. Sklenár V., Miyashiro H., Zon G., Miles H. T., Bax A. Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett. 1986 Nov 10;208(1):94–98. doi: 10.1016/0014-5793(86)81539-3. [DOI] [PubMed] [Google Scholar]
  29. Smith J. S., Nikonowicz E. P. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Biochemistry. 1998 Sep 29;37(39):13486–13498. doi: 10.1021/bi981558a. [DOI] [PubMed] [Google Scholar]
  30. Stockley P. G., Stonehouse N. J., Murray J. B., Goodman S. T., Talbot S. J., Adams C. J., Liljas L., Valegård K. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res. 1995 Jul 11;23(13):2512–2518. doi: 10.1093/nar/23.13.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
  32. Tang R. S., Draper D. E. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry. 1990 Jun 5;29(22):5232–5237. doi: 10.1021/bi00474a003. [DOI] [PubMed] [Google Scholar]
  33. Uhlenbeck O. C. Tetraloops and RNA folding. Nature. 1990 Aug 16;346(6285):613–614. doi: 10.1038/346613a0. [DOI] [PubMed] [Google Scholar]
  34. Valegârd K., Murray J. B., Stonehouse N. J., van den Worm S., Stockley P. G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol. 1997 Aug 1;270(5):724–738. doi: 10.1006/jmbi.1997.1144. [DOI] [PubMed] [Google Scholar]
  35. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  36. Varani G., Tinoco I., Jr RNA structure and NMR spectroscopy. Q Rev Biophys. 1991 Nov;24(4):479–532. doi: 10.1017/s0033583500003875. [DOI] [PubMed] [Google Scholar]
  37. Wickner R. B. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev. 1996 Mar;60(1):250–265. doi: 10.1128/mr.60.1.250-265.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]
  39. Witherell G. W., Gott J. M., Uhlenbeck O. C. Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]
  40. Woese C. R., Winker S., Gutell R. R. Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". Proc Natl Acad Sci U S A. 1990 Nov;87(21):8467–8471. doi: 10.1073/pnas.87.21.8467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]
  42. Yao W., Adelman K., Bruenn J. A. In vitro selection of packaging sites in a double-stranded RNA virus. J Virol. 1997 Mar;71(3):2157–2162. doi: 10.1128/jvi.71.3.2157-2162.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES