Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1967–1972. doi: 10.1016/S0006-3495(01)76166-8

Optical measurement of transverse molecular diffusion in a microchannel.

A E Kamholz 1, E A Schilling 1, P Yager 1
PMCID: PMC1301385  PMID: 11259309

Abstract

Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules.

Full Text

The Full Text of this article is available as a PDF (146.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan J. H., Timperman A. T., Qin D., Aebersold R. Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry. Anal Chem. 1999 Oct 15;71(20):4437–4444. doi: 10.1021/ac9906678. [DOI] [PubMed] [Google Scholar]
  2. Chen Y. H., Chen S. H. Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire-imprinting method. Electrophoresis. 2000 Jan;21(1):165–170. doi: 10.1002/(SICI)1522-2683(20000101)21:1<165::AID-ELPS165>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  3. Chiu D. T., Jeon N. L., Huang S., Kane R. S., Wargo C. J., Choi I. S., Ingber D. E., Whitesides G. M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2408–2413. doi: 10.1073/pnas.040562297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ehrlich D. J., Matsudaira P. Microfluidic devices for DNA analysis. Trends Biotechnol. 1999 Aug;17(8):315–319. doi: 10.1016/s0167-7799(99)01310-4. [DOI] [PubMed] [Google Scholar]
  5. Folch A., Toner M. Cellular micropatterns on biocompatible materials. Biotechnol Prog. 1998 May-Jun;14(3):388–392. doi: 10.1021/bp980037b. [DOI] [PubMed] [Google Scholar]
  6. Kamholz A. E., Weigl B. H., Finlayson B. A., Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem. 1999 Dec 1;71(23):5340–5347. doi: 10.1021/ac990504j. [DOI] [PubMed] [Google Scholar]
  7. Kamholz A. E., Yager P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys J. 2001 Jan;80(1):155–160. doi: 10.1016/S0006-3495(01)76003-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kenis PJ, Ismagilov RF, Whitesides GM. Microfabrication inside capillaries using multiphase laminar flow patterning . Science. 1999 Jul 2;285(5424):83–85. doi: 10.1126/science.285.5424.83. [DOI] [PubMed] [Google Scholar]
  9. Khandurina J., McKnight T. E., Jacobson S. C., Waters L. C., Foote R. S., Ramsey J. M. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem. 2000 Jul 1;72(13):2995–3000. doi: 10.1021/ac991471a. [DOI] [PubMed] [Google Scholar]
  10. Li J., Kelly J. F., Chernushevich I., Harrison D. J., Thibault P. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry. Anal Chem. 2000 Feb 1;72(3):599–609. doi: 10.1021/ac990986z. [DOI] [PubMed] [Google Scholar]
  11. Liu M. K., Li P., Giddings J. C. Rapid protein separation and diffusion coefficient measurement by frit inlet flow field-flow fractionation. Protein Sci. 1993 Sep;2(9):1520–1531. doi: 10.1002/pro.5560020917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macounova K, Cabrera CR, Holl MR, Yager P. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem. 2000 Aug 15;72(16):3745–3751. doi: 10.1021/ac000237d. [DOI] [PubMed] [Google Scholar]
  13. Pinto D. M., Ning Y., Figeys D. An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification. Electrophoresis. 2000 Jan;21(1):181–190. doi: 10.1002/(SICI)1522-2683(20000101)21:1<181::AID-ELPS181>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  14. Schurr J. M. Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem. 1977 Nov;4(4):371–431. doi: 10.3109/10409237709105461. [DOI] [PubMed] [Google Scholar]
  15. Walters R. R., Graham J. F., Moore R. M., Anderson D. J. Protein diffusion coefficient measurements by laminar flow analysis: method and applications. Anal Biochem. 1984 Jul;140(1):190–195. doi: 10.1016/0003-2697(84)90152-0. [DOI] [PubMed] [Google Scholar]
  16. Yang J., Huang Y., Wang X. B., Becker F. F., Gascoyne P. R. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys J. 2000 May;78(5):2680–2689. doi: 10.1016/S0006-3495(00)76812-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES