Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1986–1995. doi: 10.1016/S0006-3495(01)76168-1

Study of the chaperoning mechanism of bovine lens alpha-crystallin, a member of the alpha-small heat shock superfamily.

S Abgar 1, J Vanhoudt 1, T Aerts 1, J Clauwaert 1
PMCID: PMC1301387  PMID: 11259311

Abstract

We have studied the interaction between lysozyme, destabilized by reducing its -S-S- bonds, and bovine eye lens alpha-crystallin, a member of the alpha-small heat shock protein superfamily. We have used gel filtration, photon correlation spectroscopy, and analytical ultracentrifugation to study the binding of lysozyme by alpha-crystallin at 25 degrees C and 37 degrees C. We can conclude that alpha-crystallin chaperones the destabilized protein in a two-step process. First the destabilized proteins are bound by the alpha-crystallin so that nonspecific aggregation of the destabilized protein is prevented. This complex is unstable, and a reorganization and inter-particle exchange of the peptides result in stable and soluble large particles. alpha-Crystallin does not require activation by temperature for the first step of its chaperone activity as it prevents the formation of nonspecific aggregates at 25 degrees C as well as at 37 degrees C. The reorganization of the peptides, however, gives rise to smaller particles at 37 degrees C than at 25 degrees C. Indirect evidence shows that the association of several alpha-crystallin/substrate protein complexes leads to the formation of very large particles. These are responsible for the increase of the light scattering.

Full Text

The Full Text of this article is available as a PDF (162.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augusteyn R. C., Koretz J. F. A possible structure for alpha-crystallin. FEBS Lett. 1987 Sep 28;222(1):1–5. doi: 10.1016/0014-5793(87)80180-1. [DOI] [PubMed] [Google Scholar]
  2. Bettelheim F. A., Ansari R., Cheng Q. F., Zigler J. S., Jr The mode of chaperoning of dithiothreitol-denatured alpha-lactalbumin by alpha-crystallin. Biochem Biophys Res Commun. 1999 Aug 2;261(2):292–297. doi: 10.1006/bbrc.1999.1031. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharyya J., Das K. P. Alpha-crystallin does not require temperature activation for its chaperone-like activity. Biochem Mol Biol Int. 1998 Oct;46(2):249–258. doi: 10.1080/15216549800203762. [DOI] [PubMed] [Google Scholar]
  4. Blakytny R., Harding J. J. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation. Exp Eye Res. 1997 Jun;64(6):1051–1058. doi: 10.1006/exer.1997.0299. [DOI] [PubMed] [Google Scholar]
  5. Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J. 1996 Jan;10(1):10–19. [PubMed] [Google Scholar]
  6. Carver J. A., Guerreiro N., Nicholls K. A., Truscott R. J. On the interaction of alpha-crystallin with unfolded proteins. Biochim Biophys Acta. 1995 Oct 25;1252(2):251–260. doi: 10.1016/0167-4838(95)00146-l. [DOI] [PubMed] [Google Scholar]
  7. Ehrnsperger M., Gräber S., Gaestel M., Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 1997 Jan 15;16(2):221–229. doi: 10.1093/emboj/16.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farnsworth P. N., Frauwirth H., Groth-Vasselli B., Singh K. Refinement of 3D structure of bovine lens alpha A-crystallin. Int J Biol Macromol. 1998 May-Jun;22(3-4):175–185. doi: 10.1016/s0141-8130(98)00015-4. [DOI] [PubMed] [Google Scholar]
  9. Haley D. A., Bova M. P., Huang Q. L., Mchaourab H. S., Stewart P. L. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol. 2000 Apr 28;298(2):261–272. doi: 10.1006/jmbi.2000.3657. [DOI] [PubMed] [Google Scholar]
  10. Haley D. A., Horwitz J., Stewart P. L. Image restrained modeling of alphaB-crystallin. Exp Eye Res. 1999 Jan;68(1):133–136. doi: 10.1006/exer.1998.0610. [DOI] [PubMed] [Google Scholar]
  11. Haley D. A., Horwitz J., Stewart P. L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol. 1998 Mar 20;277(1):27–35. doi: 10.1006/jmbi.1997.1611. [DOI] [PubMed] [Google Scholar]
  12. Haslbeck M., Walke S., Stromer T., Ehrnsperger M., White H. E., Chen S., Saibil H. R., Buchner J. Hsp26: a temperature-regulated chaperone. EMBO J. 1999 Dec 1;18(23):6744–6751. doi: 10.1093/emboj/18.23.6744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Head M. W., Hurwitz L., Goldman J. E. Transcription regulation of alpha B-crystallin in astrocytes: analysis of HSF and AP1 activation by different types of physiological stress. J Cell Sci. 1996 May;109(Pt 5):1029–1039. doi: 10.1242/jcs.109.5.1029. [DOI] [PubMed] [Google Scholar]
  14. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz J., Huang Q. L., Ding L., Bova M. P. Lens alpha-crystallin: chaperone-like properties. Methods Enzymol. 1998;290:365–383. doi: 10.1016/s0076-6879(98)90032-5. [DOI] [PubMed] [Google Scholar]
  16. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim K. K., Kim R., Kim S. H. Crystal structure of a small heat-shock protein. Nature. 1998 Aug 6;394(6693):595–599. doi: 10.1038/29106. [DOI] [PubMed] [Google Scholar]
  18. Kim R., Kim K. K., Yokota H., Kim S. H. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9129–9133. doi: 10.1073/pnas.95.16.9129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee G. J., Roseman A. M., Saibil H. R., Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997 Feb 3;16(3):659–671. doi: 10.1093/emboj/16.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. S., Samejima T., Liao J. H., Wu S. H., Chiou S. H. Physiological role of the association complexes of alpha-crystallin and its substrates on the chaperone activity. Biochem Biophys Res Commun. 1998 Mar 17;244(2):379–383. doi: 10.1006/bbrc.1998.8272. [DOI] [PubMed] [Google Scholar]
  21. Lindner R. A., Kapur A., Mariani M., Titmuss S. J., Carver J. A. Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem. 1998 Nov 15;258(1):170–183. doi: 10.1046/j.1432-1327.1998.2580170.x. [DOI] [PubMed] [Google Scholar]
  22. Raman B., Ramakrishna T., Rao C. M. Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 1995 May 29;365(2-3):133–136. doi: 10.1016/0014-5793(95)00440-k. [DOI] [PubMed] [Google Scholar]
  23. Rao C. M., Raman B., Ramakrishna T., Rajaraman K., Ghosh D., Datta S., Trivedi V. D., Sukhaswami M. B. Structural perturbation of alpha-crystallin and its chaperone-like activity. Int J Biol Macromol. 1998 May-Jun;22(3-4):271–281. doi: 10.1016/s0141-8130(98)00025-7. [DOI] [PubMed] [Google Scholar]
  24. Roux P., Delepierre M., Goldberg M. E., Chaffotte A. F. Kinetics of secondary structure recovery during the refolding of reduced hen egg white lysozyme. J Biol Chem. 1997 Oct 3;272(40):24843–24849. doi: 10.1074/jbc.272.40.24843. [DOI] [PubMed] [Google Scholar]
  25. Smulders R. H., van Boekel M. A., de Jong W. W. Mutations and modifications support a 'pitted-flexiball' model for alpha-crystallin. Int J Biol Macromol. 1998 May-Jun;22(3-4):187–196. doi: 10.1016/s0141-8130(98)00016-6. [DOI] [PubMed] [Google Scholar]
  26. Surewicz W. K., Olesen P. R. On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy. Biochemistry. 1995 Aug 1;34(30):9655–9660. doi: 10.1021/bi00030a001. [DOI] [PubMed] [Google Scholar]
  27. Tardieu A., Laporte D., Licinio P., Krop B., Delaye M. Calf lens alpha-crystallin quaternary structure. A three-layer tetrahedral model. J Mol Biol. 1986 Dec 20;192(4):711–724. doi: 10.1016/0022-2836(86)90023-9. [DOI] [PubMed] [Google Scholar]
  28. Vanhoudt J., Abgar S., Aerts T., Clauwaert J. A small-angle X-ray solution scattering study of bovine alpha-crystallin. Eur J Biochem. 2000 Jun;267(12):3848–3858. doi: 10.1046/j.1432-1327.2000.01423.x. [DOI] [PubMed] [Google Scholar]
  29. Vanhoudt J., Abgar S., Aerts T., Clauwaert J. Native quaternary structure of bovine alpha-crystallin. Biochemistry. 2000 Apr 18;39(15):4483–4492. doi: 10.1021/bi990386u. [DOI] [PubMed] [Google Scholar]
  30. Vanhoudt J., Aerts T., Abgar S., Clauwaert J. Quaternary structure of bovine alpha-crystallin: influence of temperature. Int J Biol Macromol. 1998 May-Jun;22(3-4):229–237. doi: 10.1016/s0141-8130(98)00020-8. [DOI] [PubMed] [Google Scholar]
  31. Wang K., Spector A. The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem. 1994 May 6;269(18):13601–13608. [PubMed] [Google Scholar]
  32. Wang X. W., Bettelheim F. A. Second virial coefficient of alpha-crystallin. Proteins. 1989;5(2):166–169. doi: 10.1002/prot.340050211. [DOI] [PubMed] [Google Scholar]
  33. Wistow G. Possible tetramer-based quaternary structure for alpha-crystallins and small heat shock proteins. Exp Eye Res. 1993 Jun;56(6):729–732. doi: 10.1006/exer.1993.1090. [DOI] [PubMed] [Google Scholar]
  34. de Jong W. W., Caspers G. J., Leunissen J. A. Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol. 1998 May-Jun;22(3-4):151–162. doi: 10.1016/s0141-8130(98)00013-0. [DOI] [PubMed] [Google Scholar]
  35. van Noort J. M., van Sechel A. C., Bajramovic J. J., el Ouagmiri M., Polman C. H., Lassmann H., Ravid R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995 Jun 29;375(6534):798–801. doi: 10.1038/375798a0. [DOI] [PubMed] [Google Scholar]
  36. van de Klundert F. A., Smulders R. H., Gijsen M. L., Lindner R. A., Jaenicke R., Carver J. A., de Jong W. W. The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem. 1998 Dec 15;258(3):1014–1021. doi: 10.1046/j.1432-1327.1998.2581014.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES