Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1996–2003. doi: 10.1016/S0006-3495(01)76169-3

High-sensitivity fluorescence anisotropy detection of protein-folding events: application to alpha-lactalbumin.

D Canet 1, K Doering 1, C M Dobson 1, Y Dupont 1
PMCID: PMC1301388  PMID: 11259312

Abstract

An experimental procedure has been devised to record simultaneously fluorescence intensity and fluorescence anisotropy. A photoelastic modulator on the excitation beam enables the anisotropy signal to be recorded in one pass using a single photomultiplier tube and eliminates the need for a polarizer on the emission path. In conjunction with a stopped-flow mixer, providing a time-resolved capability, this procedure was used to study the refolding of apo alpha-lactalbumin following dilution from guanidinium chloride. Although the fluorescence intensity does not change detectably, the fluorescence anisotropy was found to resolve the conformational changes occurring between the initial unfolded state and the molten globule state formed either kinetically during refolding at pH 7.0 or at equilibrium at pH 2.0 (A-state). This result provides further evidence that fluorescence anisotropy is a valuable probe of protein structural transitions and that the information it provides concerning the rotational mobility of a fluorophore can be complementary to the information about the local environment provided by fluorescence intensity.

Full Text

The Full Text of this article is available as a PDF (102.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Kuwajima K. Rapid formation of a molten globule intermediate in refolding of alpha-lactalbumin. Fold Des. 1996;1(4):275–287. doi: 10.1016/s1359-0278(96)00041-7. [DOI] [PubMed] [Google Scholar]
  2. Beechem J. M., Sherman M. A., Mas M. T. Sequential domain unfolding in phosphoglycerate kinase: fluorescence intensity and anisotropy stopped-flow kinetics of several tryptophan mutants. Biochemistry. 1995 Oct 24;34(42):13943–13948. doi: 10.1021/bi00042a028. [DOI] [PubMed] [Google Scholar]
  3. Callender R. H., Dyer R. B., Gilmanshin R., Woodruff W. H. Fast events in protein folding: the time evolution of primary processes. Annu Rev Phys Chem. 1998;49:173–202. doi: 10.1146/annurev.physchem.49.1.173. [DOI] [PubMed] [Google Scholar]
  4. Canet D., Sunde M., Last A. M., Miranker A., Spencer A., Robinson C. V., Dobson C. M. Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry. 1999 May 18;38(20):6419–6427. doi: 10.1021/bi983037t. [DOI] [PubMed] [Google Scholar]
  5. Forge V., Wijesinha R. T., Balbach J., Brew K., Robinson C. V., Redfield C., Dobson C. M. Rapid collapse and slow structural reorganisation during the refolding of bovine alpha-lactalbumin. J Mol Biol. 1999 May 14;288(4):673–688. doi: 10.1006/jmbi.1999.2687. [DOI] [PubMed] [Google Scholar]
  6. Itzhaki L. S., Evans P. A., Dobson C. M., Radford S. E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry. 1994 May 3;33(17):5212–5220. doi: 10.1021/bi00183a026. [DOI] [PubMed] [Google Scholar]
  7. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  8. Kragelund B. B., Robinson C. V., Knudsen J., Dobson C. M., Poulsen F. M. Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry. 1995 May 30;34(21):7217–7224. doi: 10.1021/bi00021a037. [DOI] [PubMed] [Google Scholar]
  9. Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996 Jan;10(1):102–109. doi: 10.1096/fasebj.10.1.8566530. [DOI] [PubMed] [Google Scholar]
  10. Lakowicz J. R., Maliwal B. P., Cherek H., Balter A. Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry. 1983 Apr 12;22(8):1741–1752. doi: 10.1021/bi00277a001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matagne A., Chung E. W., Ball L. J., Radford S. E., Robinson C. V., Dobson C. M. The origin of the alpha-domain intermediate in the folding of hen lysozyme. J Mol Biol. 1998 Apr 17;277(5):997–1005. doi: 10.1006/jmbi.1998.1657. [DOI] [PubMed] [Google Scholar]
  12. Otto M. R., Lillo M. P., Beechem J. M. Resolution of multiphasic reactions by the combination of fluorescence total-intensity and anisotropy stopped-flow kinetic experiments. Biophys J. 1994 Dec;67(6):2511–2521. doi: 10.1016/S0006-3495(94)80741-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  14. Plaxco K. W., Dobson C. M. Time-resolved biophysical methods in the study of protein folding. Curr Opin Struct Biol. 1996 Oct;6(5):630–636. doi: 10.1016/s0959-440x(96)80029-7. [DOI] [PubMed] [Google Scholar]
  15. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  16. Schulman B. A., Kim P. S., Dobson C. M., Redfield C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630–634. doi: 10.1038/nsb0897-630. [DOI] [PubMed] [Google Scholar]
  17. Sommers P. B., Kronman M. J., Brew K. Molecular conformation and fluorescence properties of lactalbumin from four animal species. Biochem Biophys Res Commun. 1973 May 1;52(1):98–105. doi: 10.1016/0006-291x(73)90959-5. [DOI] [PubMed] [Google Scholar]
  18. Sommers P. B., Kronman M. J. Comparative fluorescence properties of bovine, goat, human and guinea pig alpha lactalbumin. Characterization of the environments of individual tryptophan residues in partially folded conformers. Biophys Chem. 1980 Apr;11(2):217–232. doi: 10.1016/0301-4622(80)80024-x. [DOI] [PubMed] [Google Scholar]
  19. Teale F. W., Badley R. A. Depolarization of the intrinsic and extrinsic fluorescence of pepsinogen and pepsin. Biochem J. 1970 Feb;116(3):341–348. doi: 10.1042/bj1160341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Troullier A., Reinstädler D., Dupont Y., Naumann D., Forge V. Transient non-native secondary structures during the refolding of alpha-lactalbumin detected by infrared spectroscopy. Nat Struct Biol. 2000 Jan;7(1):78–86. doi: 10.1038/71286. [DOI] [PubMed] [Google Scholar]
  21. Van Nuland N. A., Meijberg W., Warner J., Forge V., Scheek R. M., Robillard G. T., Dobson C. M. Slow cooperative folding of a small globular protein HPr. Biochemistry. 1998 Jan 13;37(2):622–637. doi: 10.1021/bi9717946. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES